• Title/Summary/Keyword: Dissolved organic nitrogen

Search Result 157, Processing Time 0.026 seconds

Modeling Fate and Transport of Organic and Nitrogen Species in Soil Aquifer Treatment-(I) Model Development and Verification (토양/대수층 처리(soil aquifer treatment)에서 유기물과 질소화합물 제거와 이송 모델링-(I) 모델 개발 및 검증)

  • Kim Jung-Woo;Kim Jeong-Kon;Cha Woo-Suk;Choi Hee-Chul
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.3
    • /
    • pp.9-15
    • /
    • 2005
  • Soil aquifer treatment is a water reuse technology that secondary or tertiary treated wastewater is infiltrated into the aquifer in which physical and biochemical reactions occur. Major consideration in SAT is the removal and transport of DOC and nitrogen species. In this study, reaction mechanism in SAT was examined considering nitrification, denitrification and organic oxidation. In addition, SAT modeling system was developed as the reaction mechanism was applied to groundwater flow and transport model. In verification of the reaction module by 1-dimensional unsaturated soil column test, the experimental data of all of the species, ammonium, nitrate, DOC and DO, were well matched with the simulation results. In sensitivity analysis, ammonium partition coefficient, dissolved oxygen inhibition constant and biomass decay rate affect ammonium, DOC and DO concentration of effluent, respectively.

The Assessment of Trophic State and the Importance of Benthic Boundary Layer in the Southern Coast of Korea (한국남부 연안의 영양상태 평가와 저층 경계면의 중요성)

  • 이재성;김기현;김성수;정래홍;박종수;최우정;김귀영;이필용;이영식
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.4
    • /
    • pp.179-195
    • /
    • 2004
  • The trophic state of the coastal waters of the southern part of Korea was assessed using biogeochemical data obtained from the National Marine Environmental Monitoring Program conducted by the National Fisheries Research and Development Institute for six years. The trophic state of different areas, analyzed by non-metric multi-dimensional scaling (MDS) analysis, could divide the areas into three groups. Masan Bay, with suboxic water masses and/or the highest concentrations of dissolved inorganic nitrogen and phosphorus occurred, was assessed as being in a hypertrophic state. Ulsan Bay, Onsan Bay, Busan and Jinhae Bay, located near strong point sources, were in a eutrophic state. Other areas, including Tongyong, Yosu, Mokpo and Jeju island, were evaluated as being in a mesotrophic state. During 1997 to 2002, the average values of excess nitrogen, which is the difference between the measured dissolved inorganic nitrogen (DIN) and the corrected DIN using the Redfield ratio, were positive at Ulsan, Onsan, and Busan, where there were inflows from polluted rivers. In contrast, those were negative values in Haengam Bay, Gwangyang Bay and nearby Yosu. This suggests that the limiting element for phytoplankton growth differed among sites. The time series data of excess nitrogen showed gradual decrease over time in the hypertrophic waters, but the opposite trend in the mesotrophic waters. This indicated that the ratio of nitrogen to phosphate varied according to the trophic state of the coastal waters. The enrichment of organic matter in sediment in eutrophic waters would disturb the normal pattern of biogeochemical cycling of nitrogen and phosphate. In order to assess the condition of the coastal environment, the benthic boundary layer should be considered.

Antimicrobial activity and tumor cell growth inhibition of an Actinomycete isolated from Korean soil (토양에서 분리한 방선균의 항균력 및 암세포주 성장 억제능)

  • Han, Jin-HO;Kim, Seung-Cheol;Chang, Young-Soo;Ryeom, Kon
    • YAKHAK HOEJI
    • /
    • v.37 no.4
    • /
    • pp.389-396
    • /
    • 1993
  • An Actinomycetes strain JB isolated from Mt. Hanla had a strong antimicrobial activity against gram positive bacteria and tumor cell growth inhibition. Especially, it couldn't degrade starch and casein as organic compounds. It was resist on lincomycin and rifampicin. The spore mass of strain JB which was arethrospore was white. DAP of the cell wall was L, L-DAP. Antimicrobial material was heat stable, dissolved in ethyl acetate, and not dissolved in butanol. In the pressnce of 0.1% phenol and 4% sodium chloride, strain JB could grow, but it didn't growth at below $10^{\circ}C$. Strain JB didn't use dextran, sodium acetate and sodium citrate as sole carbon source and L-cystein and L-thereonine as nitrogen source. The filtered broth of strain JB had the antimicrobial activity against gram positive bacteria, especially Staphylococcus aureus (ATCC 65389) and the growth inhibition of tumor cell line.

  • PDF

Application of Activated Carbon and Crushed Concrete as Capping Material for Interrupting the Release of Nitrogen, Phosphorus and Organic Substance from Reservoir Sediments (저수지 퇴적물에서 질소, 인 및 유기물질 용출차단을 위한 활성탄과 폐콘크리트의 피복재로서 적용)

  • Kang, Ku;Kim, Won-Jae;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.1-9
    • /
    • 2016
  • This study aims to assess the effectiveness of activated carbon (AC) and crushed concrete (CC) as capping material to block the release of nitrogen, phosphorus, and organic substance from reservoir sediments. The efficiency of AC and CC as capping material was evaluated in a reactor in which a 1 or 3 cm thick layer of capping materials was placed on the sediments collected from Mansu reservoir in Anseong-city. Dissolved oxygen (DO) concentration, total nitrogen (T-N), total phosphorus (T-P), and chemical oxygen demand (COD) concentration in reservoir water above the uncapped sediments and capping material were monitored for 45 days. The release rate of T-N was in the following increasing order: AC 3 cm ($1.18mg/m^2{\cdot}d$) < CC 1 cm ($2.66mg/m^2{\cdot}d$) < AC 1 cm ($2.94mg/m^2{\cdot}d$) < CC 3 cm ($3.42mg/m^2{\cdot}d$) < uncapped ($4.59mg/m^2{\cdot}d$). The release rate of T-P was in the following increasing order: AC 3 cm ($0mg/m^2{\cdot}d$) $${\approx_-}$$ CC 3 cm ($0mg/m^2{\cdot}d$) < CC 1 cm ($0.03mg/m^2{\cdot}d$) < AC 1 cm capped ($0.07mg/m^2{\cdot}d$) < uncapped ($0.24mg/m^2{\cdot}d$). The release of nitrogen and phosphorus were effectively blocked by AC capping of 3 cm thickness, and CC capping of 3 cm thickness effectively controlled the release of phosphorus. The order of increasing COD release rate was as follows: AC 3 cm ($0mg/m^2{\cdot}d$) $${\approx_-}$$ CC 3 cm ($0mg/m^2{\cdot}d$) < CC 1 cm ($5.03mg/m^2{\cdot}d$) < AC 1 cm ($7.28mg/m^2{\cdot}d$) < uncapped ($10.05mg/m^2{\cdot}d$), indicating that AC and CC capping effectively interrupted the release of organic contaminants from the sediments. It was concluded that AC and CC could effectively block the release of T-N, T-P and COD release from contaminated reservoir sediments.

Evaluation of Algal Growth Potential in the Mangyeong River by MBOD method (MBOD법에 의한 만경강 수계의 조류성장잠재력 평가)

  • Kim, Jong Gu;Kim, Jun U
    • Journal of Environmental Science International
    • /
    • v.13 no.9
    • /
    • pp.807-817
    • /
    • 2004
  • The modified biochemical oxygen demand (MBOD) were conducted to evaluate the water quality and fertility in the Mangyeong river from november 2002 to april 2003. MBOD method was used to evaluate algal growth potentials and their limiting factors. MBOD depends on the amount of available inorganic nutrient and organic substrate during 5-day incubation in the dark condition at $20^{\circ}C.$ The MBOD assay depends on inorganic nutrients such as phosphorus and nitrogen as well as reduced carbon as called MBOD, MBOD-P, and MBOD-N, respectively. The concentration of pollutants were in the range of 3.08~48.36 mg/L for COD. The concentration of nutrients were in the range of 0.37~111.62 mg/L for dissolved inorganic nitrogen (DIN) and 0.00~1.03 mg/L for dissolved inorganic phosphorus (DIP). The results of MBOD bioassay showed that the MBOD, MBOD-P and MBOD-N values were 15~173 mg $O_2/L,$ 13~165 mg $O_2/L$ and 66~175 mg $O_2/L$ ranges, respectively. The MBOD values are found to be the highest in Iksan River and the lowest in Hari River throughout the Mangyeong River. The relationships of MBOD, MBOD-P and MBOD-N in MBOD method were generally found in MBOD$\risingdotseq$ MBOD-P$\risingdotseq$MBOD-N. But the result of Gosan was appeared to MBOD$\risingdotseq$MBOD-N > MBOD-P. The MBOD-N value was higher 3 to 5 times than the MBOD-P value in the Gosan station. The algal growth potentials expressed as the concentration of chlorophyll-a were maximum 20 times more than algal biomass in the water column.

A Study on the Parameters of WASP5 Model in Daechung Reservoir (대청호에서 WASP5 모델 매개변수에 관한 연구)

  • Han, Woon Woo;Kim, Kyu-Hyung;Ahn, Tae-Bong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.69-77
    • /
    • 2003
  • This study was carried out to evaluate the WASP5 model parameters and to analyze the sensitivity of parameters in Daechung Reservoir. The values predicted by the model and tendency were very similar to the observed data at Daejeon intake, so it is possible to predict water quality of the Daejeon intake region in the future. Results from the sensitivity analysis showed that Chlorophyll-a was sensitive to variations in saturated growth rate of phytoplankton, endogenous respiration rate of phytoplankton, extinction coefficient and temperature. T-N was sensitive to mineralization rate of dissolved organic nitrogen and temperature. T-P was affected by T-P load, temperature, extinction coefficient, mineralization rate of dissolved organic phosphorus and saturated growth rate of phytoplankton. BOD was influenced by deoxygenation rate and temperature, and DO was influenced by temperature. Adequate input data was applied and assessed through the model sensitivity analysis. So it is possible to distinguish the input data which need careful attention when it has application to model.

  • PDF

Nitrate Removal of Flue Gas Desulfurization Wastewater by Autotrophic Denitrification

  • Liu, L.H.;Zhou, H.D.;Koenig, A.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.46-52
    • /
    • 2007
  • As flue gas desulfurization (FGD) wastewater contains high concentrations of nitrate and is very low in organic carbon, the feasibility of nitrate removal by autotrophic denitrification using Thiobacillus denitrificans was studied. This autotrophic bacteria oxidizes elemental sulfur to sulfate while reducing nitrate to elemental nitrogen gas, thereby eliminating the need for addition of organic compounds such as methanol. Owing to the unusually high concentrations of dissolved salts $(Ca^{2+},\;Mg^{2+},\;Na^+,\;K^+,\;B^+,\;SO_4^{2-},\;Cl^-,\;F^-,)$ in the FGD wastewater, extensive laboratory-scale and pilot-scale tests were carried out in sulfur-limestone reactors (1) to determine the effect of salinity on autotrophic denitrification, (2) to evaluate the use of limestone for pH control and as source of inorganic carbon for microbial growth, and, (3) to find the optimum environmental and operational conditions for autotrophic denitrification of FGD wastewater. The experimental results demonstrated that (1) autotrophic denitrification is not inhibited up to 1.8 mol total dissolved salt content; (2) inorganic carbon and inorganic phosphorus must be present in sufficiently high concentrations; (3) limestone can supply effective buffering capacity and inorganic carbon; (4) the high calcium concentration may interfere with pH control, phosphorus solubility and limestone dissolution, hence requiring pretreatment of the FGD wastewater; and, 5) under optimum conditions, complete autotrophic denitrification of FGD wastewater was obtained in a sulfur-limestone packed bed reactor with a sulfur:limestone volume ratio of 2:1 for volumetric loading rates up to 400g $NO_{3^-}N/m^3.d$. The interesting interactions between autotrophic denitrification, pH, alkalinity, and the unusually high calcium and boron content of the FGD wastewater are highlighted. The engineering significance of the results is discussed.

  • PDF

Spatial distribution and temporal variation of hydrogeochemistry in coastal lagoons and groundwater on the eastern area of korea

  • Chanyoung Jeong;Soo Min Song;Woo-Hyun Jeon;Hee Sun Moon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.247-247
    • /
    • 2023
  • Coastal lagoons play a crucial role in water exchange, water quality, and biodiversity. It is essential to monitor and understand the dynamics of hydrogeochemistry in lagoon water and its groundwater to preserve and sustainably manage the groundwater-dependent ecosystems like coastal lagoons. This study investigated the spatial and temporal hydrogeochemical characteristics of coastal lagoon (Songjiho) and groundwater on the east coast of Korea. The concentrations of major ions, water isotopes, and nutrients (nitrogen and dissolved organic carbon) in lagoon water and groundwater were periodically monitored for one year. The study revealed that major ions and total dissolved solids (TDS) concentration were higher at deeper depths of aquifers and closer to the coastal area. The hydrogeochemical characteristics of coastal lagoon and groundwater chemistry were classified into two types, Ca-Mg-HCO3 and Na-Cl, based on their spatial location from inland to coastal area. Moreover, the hydrogeochemical characteristics of coastal lagoons and groundwater varied significantly depending on the season. During the wet season, the increased precipitation and evaporation lead to changes in water chemistry. As a result, the total organic carbon (TOC) of coastal lagoons increases during this season, likely due to increased runoff by rainfall whereas the variation of chemical compositions in the lagoon and groundwater were not significant because there is reduced precipitation, resulting in stable water levels and during the dry season. The study emphasizes the impact of spatial distribution and seasonal changes in precipitation, evaporation, and river discharge on the hydrogeochemical characteristics of the coastal aquifer and lagoon system. Understanding these impacts is crucial for managing and protecting coastal lagoons and groundwater resources.

  • PDF

Apparent Dominance of Regenerated Primary Production in the Yellow Sea

  • Park, Myung-G.;Yang, Sung-R.;Shim, Jae-H.;Hong, Gi-H.;Chung, Chang-S.;Yang, Dong-B.;Cho, Byung-C.
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.20-25
    • /
    • 2004
  • The Yellow Sea is known to be a very productive region in terms of fisheries. However, its trophic status seems to be highly variable, ranging from oligotrophic to eutrophic, based on new production (NP) values. The NP and regenerated production (RP) values estimated from $^{15}N$-labelled nitrate and ammonium uptake in spring (April 1996) and winter (February 1997) during this study ranged from 0.05 to 19.8 mg $N m^{-2} d^{-1}$ and from 0.1 to 22.8 mg $N m^{-2}d^{-1}$, respectively. Our measurements and earlier observations suggested that NP in the Yellow Sea varied over the four orders of magnitude (range 0.05-180.9 mg $N m^{-2} d^{-1}$) temporally and spatially, and that RP (range 0.1-507.5 mg $N m^{-2}d^{-l}$) based on ammonium predominated during most period of the year, except in winter when both productions were low. The significant nitrogen uptake by phytoplankton below the euphotic zone and episodic entrainment of phytoplankton from below the euphotic zone into the euphotic zone, and nitrite excretion and dissolved organic nitrogen release during nitrate uptake might explain the apparent dominance of RP in the Yellow Sea.

Evaluation on Removal of Organics and Nutrients from Reverse Osmosis Concentrate using Activated Carbon (활성탄을 이용한 역삼투 농축수의 유기물 및 영양염류 제거 평가)

  • Joo, Sung Hee;Park, Jong Min;Lee, Yang Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.479-482
    • /
    • 2012
  • Membrane process has been one of the widely applied wastewater treatment options, especially in field. However, one of the tricky issues in the process is to treat concentrates generated from reverse osmosis (RO) system in a manner of saving cost with maximum efficiency for treating a wide range of contaminants. Stimulated with the challenging issues, we have conducted a series of experimental studies in the evaluation for removing organics and nutrients using activated carbon. Results indicated that while powdered activated carbon (PAC) efficiently removed organics and the extent of removal was proportional to the PAC dosage, little removal of nitrogen and phosphorus was observed despite increasing the PAC dose. Interestingly, applying PAC was superior in removing organics than using granular activated carbon (GAC). These results suggest smaller particle size with higher surface area could provide greater chemical reactivity in removing organics.