• Title/Summary/Keyword: Dissolved gas

Search Result 372, Processing Time 0.026 seconds

Effective Removal of Gaseous BTEX Using VPB During Treatment of Briny Produced Water (VPB를 이용한 효율적인 Gas 상태의 BTEX 제거에 관한 연구)

  • Kwon, Soondong
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.167-177
    • /
    • 2011
  • Billions of barrels of briny produced water are generated in the United States every year during oil and gas production. The first step toward recovering or reusing this water is to remove the hazardous organics dissolved in the briny produced water. Biological degradation of hazardous volatile compound could be possible regardless of salinity if they were extracted from briny water. In the current work, the effectiveness of a vapor phase biofilter to degrade the gas-phase contaminants (benzene, toluene, ethylbenzene and xylenes, BTEX) extracted from briny produced water was evaluated. The performance of biofilter system responded well to short periods when the BTEX feed to the biofilter was discontinued. To challenge the system further, the biofilter was subjected to periodic spikes in inlet BTEX concentration as would be expected when it is coupled to a Surfactant-Modified Zeolite (SMZ) bed. Results of these experiments indicate that although the BTEX removal efficiency declined under these conditions, it stabilized at 75% overall removal even when the biofilter was provided with BTEX-contaminated air only 8 hours out of every 24 hours. Benzene removal was found to be the most sensitive to time varying loading conditions. A passive, granular activated carbon bed was effective at attenuating and normalizing the peak BTEX loadings during SMZ regeneration over a range of VOC loads. Field testing of a SMZ bed coupled with an activated carbon buffering/biofilter column verified that this system could be used to remove and ultimately biodegrade the dissolved BTEX constituents in briny produced water.

A Hybrid Type Based Expert System for Fault Diagnosis in Transformers (변압기 고장 진단을 위한 하이브리드형 전문가 시스템)

  • Jeon, Young-Jae;Yoon, Yong-Han;Kim, Jae-Chul;Choi, Do-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.143-145
    • /
    • 1996
  • This paper presents the hybrid type based expert system for fault diagnosis in transformers. The proposed system uses the novel fault diagnostic technique based on dissolved gas analysis(DGA) in oil-immersed transformers. The uncertainty of key gas analysis, norm threshold, and gas ratio boundaries are managed by using a fuzzy set. Also, the uncertainty of the fault diagnostic rules are handled by using fuzzy measures. Finally, kohnen's feature map performs fault classification in transformers. To verify the effectiveness of the proposed diagnosis technique, the hybrid type based expert system for fault diagnosis has been tested by using KEPCO's transformer gas records.

  • PDF

Studies on Simultaneous Analysis of Organophosphorus Pesticide Residues in Crops by Gas-Liquid Chromatography (I) Extraction and Cleanup (기체-액체 크로마토그래피에 의한 농작물 중 유기인제 잔류 농약의 동시 분석에 관한 연구 (제 1 보). 용매추출 및 방해성분의 분리 제거)

  • Taek-Jae Kim;Yun-Woo Eo;Young Sang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.465-474
    • /
    • 1986
  • The solvent extraction and cleanup processes for the simultaneous gas-liquid chromatographic determination of 11 kinds of organophosphorous pesticide residues in crops were investigated. The extracts dissolved with acetone were partitioned with petroleum ether after adding saturated NaCl solution. Evaporated the partitioning solvent, the residue was dissolved in methylene chloride and eluted through mixed adsorbent (1 : 2 : 4 of activated carbon, magnesia and diatomaceous earth) with methylene chloride as an eluent. The pesticides recovered were 82∼105% and the impurities were effectively removed.

  • PDF

PNN based Rogers Diagnosis Method for Fault Classification of Oil-filled Power Transformer (유입변압기 고장분류를 위한 PNN 기반 Rogers 진단기법 개발)

  • Lim, Jae-Yoon;Lee, Dae-Jong;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.280-284
    • /
    • 2016
  • Stability and reliability of a power system in many respects depend on the condition of power transformers. Essential devices as power transformers are in a transmission and distribution system. Being one of the most expensive and important elements, a power transformer is a highly essential element, whose failures and damage may cause the outage of a power system. To detect the power transformer faults, dissolved gas analysis (DGA) is a widely-used method because of its high sensitivity to small amount of electrical faults. Among the various diagnosis methods, Rogers diagonsis method has been widely used in transformer in service. But this method cannot offer accurate diagnosis for all the faults. This paper proposes a fault diagnosis method of oil-filled power transformers using PNN(Probability Neural Network) based Rogers diagnosis method. The test result show better performance than conventional Rogers diagnosis method.

The characteristic change of water using the wet-plasma (습식 플라즈마에 의한 물의 특성 변화)

  • Lee, Jae-Dong;Park, Hong-Jae;Lee, Dong-Hun;Kim, Young-Ju;Park, Jae-Yoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1151-1154
    • /
    • 2003
  • Ultraviolet rays, OH H O radical and $O_3$ produced by the streamer discharge in water are widely used to deactivate microorganisms and remove organic contaminants in water and the dominant factor of these decomposition is the oxidized reaction of hydrogen peroxide and dissolved $O_3$ in water. In this paper, the barrier discharge was used to create plasma in a gas, liquid and solid medium and the electrode with the reactor combined barrier with packed type(BPR) was made as noncontact way against water so that the effect of water characteristic change by the erosion of electrodes exposing in water should be minimized. The active radical and $O_3$ gas generated in plasma region were reacted into the water as electrode so that at the same time a dissolved $O_3$ and hydrogen peroxide were formed in water and The change of pH and conductivity were measured.

  • PDF

Quantitative Visualization of Oxygen Transfer in Micro-channel using Micro-LIF Technique (마이크로 레이저 형광 여기법을 이용한 미세채널 내부에서의 산소 확산에 대한 정량적 가시화)

  • Chen, Juan;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.34-39
    • /
    • 2012
  • In the present study, oxygen transfer process across gas-liquid interface in a Y-shape micro-channel is quantitatively visualized using the micro laser induced fluorescence (${\mu}$-LIF) technique. Diffusion coefficient of Oxygen ($D_L$) is estimated based on the experimental results and compared to its theoretical value. Tris ruthenium (II) chloride hexahydrate was used as the oxygen quenchable fluorescent dye. A light-emitting diode (LED) with wavelength of 450 nm was used as the light source and phosphorescence images of fluorescent dye were captured by a CMOS high speed camera installed on the microscope system. Water having dissolved oxygen (DO) value of 0% and pure oxygen gas were injected into the Y-shaped microchannel by using a double loading syringe pump. In-situ pixel-by-pixel calibration was carried out to obtain Stern-Volmer plots over whole flow field. Instantaneous DO concentration fields were successfully mapped according to Stern-Volmer plots and DL was calculated as $2.0675{\times}10^{-9}\;m^2/s$.

Dissolved Gas Analysis of Power Transformer Using Fuzzy Clustering and Radial Basis Function Neural Network

  • Lee, J.P.;Lee, D.J.;Kim, S.S.;Ji, P.S.;Lim, J.Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.157-164
    • /
    • 2007
  • Diagnosis techniques based on the dissolved gas analysis(DGA) have been developed to detect incipient faults in power transformers. Various methods exist based on DGA such as IEC, Roger, Dornenburg, and etc. However, these methods have been applied to different problems with different standards. Furthermore, it is difficult to achieve an accurate diagnosis by DGA without experienced experts. In order to resolve these drawbacks, this paper proposes a novel diagnosis method using fuzzy clustering and a radial basis neural network(RBFNN). In the neural network, fuzzy clustering is effective for selecting the efficient training data and reducing learning process time. After fuzzy clustering, the RBF neural network is developed to analyze and diagnose the state of the transformer. The proposed method measures the possibility and degree of aging as well as the faults occurred in the transformer. To demonstrate the validity of the proposed method, various experiments are performed and their results are presented.

Mathematical Model for a Three-Phase Fluidized Bed Biofilm Reactor in Wastewater Treatment

  • Choi, Jeong-Woo;Min, Ju-Hong;Lee, Won-Hong;Lee, Sang-Back
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.51-58
    • /
    • 1999
  • A mathematical model for a three phase fluidized bed bioreactor (TFBBR) was proposed to describe oxygen utilization rate, biomass concentration and the removal efficiency of Chemical Oxygen Demand (COD) in wastewater treatment. The model consisted of the biofilm model to describe the oxygen uptake rate and the hydraulic model to describe flow characteristics to cause the oxygen distribution in the reactor. The biofilm model represented the oxygen uptake rate by individual bioparticle and the hydrodynamics of fluids presented an axial dispersion flow with back mixing in the liquid phase and a plug flow in the gas phase. The difference of setting velocity along the column height due to the distributions of size and number of bioparticle was considered. The proposed model was able to predict the biomass concentration and the dissolved oxygen concentration along the column height. The removal efficiency of COD was calculated based on the oxygen consumption amounts that were obtained from the dissolved oxygen concentration. The predicted oxygen concentration by the proposed model agreed reasonably well with experimental measurement in a TFBBR. The effects of various operating parameters on the oxygen concentration were simulated based on the proposed model. The media size and media density affected the performance of a TFBBR. The dissolved oxygen concentration was significantly affected by the superficial liquid velocity but the removal efficiency of COD was significantly affected by the superficial gas velocity.

  • PDF

Study on methane hydrate production using depressurization method (감압법을 이용한 메탄 하이드레이트 생산에 대한 연구)

  • Park, Sung-Seek;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.1
    • /
    • pp.34-41
    • /
    • 2010
  • Gas hydrates are solid solutions when water molecules are linked through hydrogen bonding and create host lattice cavities that can enclose many kinds of guest(gas) molecules. There are plenty of methane(gas) hydrate in the earth and distributed widely at offshore and permafrost. Several schemes, to produce methane hydrates, have been studied. In this study, depressurization method has been utilized for the numerical model due to it's simplicity and effectiveness. IMPES method has been used for numerical analysis to get the saturation and velocity profile of each phase and pressure profile, velocity of dissociation front progress and the quantity of produced gas. The values calculated for the sample length of 10m, show that methane hydrates has been dissolved completely in approximately 223 minutes and the velocity of dissociation front progress is 3.95㎝ per minute. The volume ratio of the produced gas in the porous media is found to be about 50%. Analysing the saturation profile and the velocity profile from the numerical results, the permeability of each phase in porous media is considered to be the most important factor in the two phase flow propagation. Consequently, permeability strongly influences the productivity of gas in porous media for methane hydrates.

Evaluating Effective Volume and Hydrodynamic Behavior in a Full-Scale Ozone Contactor with CFD Simulation (전산유체역학을 이용한 실규모 오존 접촉에서의 수리거동과 유효 체적 평가에 관한 연구)

  • Park, No-Suk;Mizuno, Tadao;Tsuno, Hiroshi;Bea, Chul-Ho;Lee, Seon-Ju
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.656-665
    • /
    • 2004
  • An Ozone reaction model combined with CFD(Computational Fluid Dynamics) technique was developed in this research, in the simulation of ozonation, hydrodynamic behavior as well as reaction model is important because ozone is supplied to treated water as gas ozone. In order to evaluate hydrodynamic behavior in an ozone contactor, CFD technique was applied. CFD technique elucidated hydrodynamic behavior in the selected ozone contactor, which consisted of three main chambers. Three back-mixing zones were found in the contactor. The higher velocities of water were observed in the second and third compartments than that in the first compartment. The flow of the opposite direction to the main flow was observed near the water surface. Based on the results of CFD simulation, the ozone contactor was divided into small compartments. Mass balance equations were established were established in each compartment with reaction terms. This reaction model was intended to predict dissolved ozone concentration, especially. We concluded that the model could predict favorably the mass balance of ozone, namely absorption efficiency of gaseous ozone, dissolved ozone concentration and ozone consumption. After establishing the model, we discussed the effect of concentration of gaseous ozone at inlet, temperature and organic compounds on dissolved ozone concentration.