• Title/Summary/Keyword: Dissolved Oxygen Concentration Field

Search Result 37, Processing Time 0.024 seconds

Quantitative Visualization of Dissolved Oxygen Concentration Field in Micro Flows using PtOEP/PS Membrane (마이크로 유동에서 PtOEP/PS 박막을 이용한 용존 산소 농도장의 정량적 가시화)

  • Song, Dae-Hun;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.1
    • /
    • pp.36-41
    • /
    • 2011
  • It is highly needed to measure the dissolved oxygen (DO) concentration field in water for a variety of purposes such as biological, industrial, environmental monitoring and medical application. Application of PSP (Pressure Sensitive Paint) which is sensitive to oxygen concentration has been carried out to measure DO concentration field using PtOEP/PS film and intensity based method under the UV-LEDs illumination. A micro round water jet having 100% of DO was obliquely impinged on to a PtOEP/PS film coated plate placed in a 0% of DO water container. DO concentration fields on the impinging plate were quantitatively visualized with a $2.94\;{\mu}m$ of spatial resolution. Through pixel-by-pixel calibration, uncertainty of each pixel by different sensitivity, different dye concentration and non-uniformity of illumination was removed. It is demonstrated that the high DO concentration region was coincided with the impingement area. The DO concentration gradient due to DO diffusion was affected by Reynolds number.

Quantitative Visualization of Oxygen Transfer in Micro-channel using Micro-LIF Technique (마이크로 레이저 형광 여기법을 이용한 미세채널 내부에서의 산소 확산에 대한 정량적 가시화)

  • Chen, Juan;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.34-39
    • /
    • 2012
  • In the present study, oxygen transfer process across gas-liquid interface in a Y-shape micro-channel is quantitatively visualized using the micro laser induced fluorescence (${\mu}$-LIF) technique. Diffusion coefficient of Oxygen ($D_L$) is estimated based on the experimental results and compared to its theoretical value. Tris ruthenium (II) chloride hexahydrate was used as the oxygen quenchable fluorescent dye. A light-emitting diode (LED) with wavelength of 450 nm was used as the light source and phosphorescence images of fluorescent dye were captured by a CMOS high speed camera installed on the microscope system. Water having dissolved oxygen (DO) value of 0% and pure oxygen gas were injected into the Y-shaped microchannel by using a double loading syringe pump. In-situ pixel-by-pixel calibration was carried out to obtain Stern-Volmer plots over whole flow field. Instantaneous DO concentration fields were successfully mapped according to Stern-Volmer plots and DL was calculated as $2.0675{\times}10^{-9}\;m^2/s$.

Study on the Output Current for Electrochemical Low-energy Neutrino Detector with Regards to Oxygen Concentration

  • Suda, Shoya;Ishibashi, Kenji;Riyana, Eka Sapta;Aida, Yani Nur;Nakamura, Shohei;Imahayashi, Yoichi
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.373-377
    • /
    • 2016
  • Background: Experiments with small electrochemical apparatus were previously carried out for detecting low-energy neutrinos under irradiation of reactor neutrinos and under natural neutrino environment. The experimental result indicated that the output current of reactor-neutrino irradiated detector was appreciably larger than that of natural environmental one. Usual interaction cross-sections of neutrinos are quite small, so that they do not explain the experimental result at all. Materials and Methods: To understand the experimental data, we propose that some biological products may generate AV-type scalar field B0, leading to a large interaction cross-section. The output current generation is ascribed to an electrochemical process that may be assisted by weak interaction phenomena. Dissolved oxygen concentrations in the detector solution were measured in this study, for the purpose of understanding the mechanism of the detector output current generation. Results and Discussion: It was found that the time evolution of experimental output current was mostly reproduced in simulation calculation on the basis of the measured dissolved oxygen concentration. Conclusion: We mostly explained the variation of experimental data by using the electrochemical half-cell analysis model based on the DO concentration that is consistent to the experiment.

Application of CE-QUAL-W2 [v3.2] to Andong Reservoir: Part I: Simulations of Hydro-thermal Dynamics, Dissolved Oxygen and Density Current

  • Bhattarai, Prasid Ram;Kim, Yoon-Hee;Heo, Woo-Myoung
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.247-263
    • /
    • 2008
  • A two-dimensional (2D) reservoir hydrodynamics and water quality model, CE-QUAL-W2, is employed to simulate the hydrothermal behavior and density current regime in Andong Reservoir. Observed data used for model forcing and calibration includes: surface water level, water temperature, dissolved oxygen and suspended solids concentration. The model was calibrated to the year of 2003 and verified with continuous run from 2000 till 2004. Without major adjustments, the model accurately simulated surface water levels including the events of large storm. Deep-water reservoirs, like Andong Reservoir, located in the Asian Monsoon region begin to stratify in summer and overturn in fall. This mixing pattern as well as the descending thermocline, onset and duration of stratification and timing of turnover phenomenon were well reproduced by the Andong Model. The temperature field and distinct thermocline are simulated to within $2^{\circ}C$ of observed data. The model performed well in simulating not only the dissolved oxygen profiles but also the metalimnetic dissolved minima phenomenon, a common1y occurring phenomenon in deep reservoirs of temperate regions. The Root Mean Square Error (RMSE) values of model calibration for surface water elevation, temperature and dissolved oxygen were 0.0095 m, $1.82^{\circ}C$, and $1.13\;mg\;L^{-1}$, respectively. The turbid storm runoff, during the summer monsoon, formed an intermediate layer of about 15 m thickness, moved along the metalimnion until being finally discharged from the dam. This mode of transport of density current, a common characteristic of various other large reservoirs in the Asian summer monsoon region, was well tracked by the model.

Variation of Phosphorus Concentration and Redox Potential in a Paddy Field Plot During Growing Season (영농기 필지논에서의 인 (P) 농도와 산화환원전위 (Eh)의 변화 특성)

  • Kim, Young-Hyeon;Kim, Jin-Soo;Jang, Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.47-52
    • /
    • 2010
  • The purpose of this study is to investigate characteristics of total phosphorus (TP) and phosphate phosphorous ($PO_4$-P) concentrations in ponded water and redox potential (Eh) in paddy soil during the growing season. The TP and $PO_4$-P concentrations showed twice peak values after basal dressing and tillering fertilization. The ratio of $PO_4$-P to TP showed low values (0.07~0.18), indicating that most of phosphorus is particlulate. The $PO_4$-P concentrations significantly decreased with dissolved oxygen (DO) concentrations. The Eh showed high values (179~636 mV) under non-ponded aerobic condition, but low values (74~112 mV) under ponded anaerobic condition The TP and $PO_4$-P concentrations in ponded water increased shortly after tillering fertilization even if phosphorus was not applied. This may be due to the release of dissolved phosphorus from the bottom sediment and its associated algal and water flea blooms under anaerobic condition. Therefore, proper water management should be needed shortly after tillering fertilization.

Research for High Quality Ingot Production in Large Diameter Continuous Czochralski Method (대구경 연속성장 초크랄스키법에서 고품질 잉곳 생산을 위한 연구)

  • Lee, Yu Ri;Jung, Jae Hak
    • Current Photovoltaic Research
    • /
    • v.4 no.3
    • /
    • pp.124-129
    • /
    • 2016
  • Recently industry has voiced a need for optimally designing the production process of low-cost, high-quality ingots by improving productivity and reducing production costs with the Czochralski process. Crystalline defect control is important for the production of high-quality ingots. Also oxygen is one of the most important impurities that influence crystalline defects in single crystals. Oxygen is dissolved into the silicon melt from the silica crucible and incorporated into the crystalline a far larger amount than other additives or impurities. Then it is eluted during the cooling process, there by causing various defect. Excessive quantities of oxygen degrade the quality of silicone. However an appropriate amount of oxygen can be beneficial. because it eliminates metallic impurities within the silicone. Therefore, when growing crystals, an attempt should be made not to eliminate oxygen, but to uniformly maintain its concentration. Thus, the control of oxygen concentration is essential for crystalline growth. At present, the control of oxygen concentration is actively being studied based on the interdependence of various factors such as crystal rotation, crucible rotation, argon flow, pressure, magnet position and magnetic strength. However for methods using a magnetic field, the initial investment and operating costs of the equipment affect the wafer pricing. Hence in this study simulations were performed with the purpose of producing low-cost, high-quality ingots through the development of a process to optimize oxygen concentration without the use of magnets and through the following. a process appropriate to the defect-free range was determined by regulating the pulling rate of the crystals.

Mechanism of Oxygen-Deficient Water Formation in Jindong Bay (진동만의 빈산소수괴 형성기구)

  • 김동선;김상우
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.177-186
    • /
    • 2003
  • The influences of horizontal and vertical flow components including the stratification of water column and the wind field on the formation of oxygen-deficient water in summer in Jindong Bay, northern part of Chinhae Bay, were examined. Temperature, salinity and dissolved oxygen in seawater, and direction and velocity of wind were observed in Jindong Bay from March 1998 to February 1999. Low concentration of 5 mg/L in dissolved oxygen (DO) appeared at the bottom layer from May to September. Extremely low DO concentration less than 3 mg/L was investigated in summer (July to August) when stratification was strongest due to abrupt vertical gradients of temperature and salinity in water column. Bottom waters with the extremely low DO concentration were observed even in spring (May to June) at the inner part of the bay. In summer (August to September), the bottom waters with the low DO concentration (less than 5 mg/L) existed at the water depth from 4 to 6 m, being moved upward to the surface layer compared to other seasons. Vertical components of residual flow, calculated by the direction and velocity of wind, in Jindong Bay in summer showed that locally prevailed northerly and westerly wind resulted in downwelling flow at the outer part of the bay and conversely, upwelling at the inner part of the bay. In addition, bottom current at the outer part corresponding to the downwelling area directed to the inner part, probably resulting in a transport of the particulate organic matter settled at the bottom waters to the inner part of the bay. The oxygen-deficient watermass, which was formed at the bottom layer of the inner part, was likely to transported to the surface layer by the upwelling flow.

Assessment of water quality in an artificial urban canal: A case study of Songdo City in South Korea

  • Ahn, Jungkyu;Na, Yeji;Park, Sung Won
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.582-590
    • /
    • 2019
  • Currently, the waterfront facility was constructed in New Songdo City, South Korea. It has the various water leisure areas and especially an artificial urban canal with filtered seawater by re-circulating flow system. However, due to excessive amount of nutrients from seawater combined with complicated geometry, it is highly vulnerable to deterioration of water quality. In this study, flow characteristics and pollutant transport were analyzed with comprehensive numerical models, MIKE 3 FM and ECO-lab. Based on these numerical results, notable sampling points were selected for field measurements and comparison between modeling and measured results were conducted. In addition, the integrated water quality evaluation index, Water Quality Index was applied to analyze various water quality issues. We also set up scenarios to control the two kinds of water quality factors, dissolved oxygen (DO), and total phosphorus (TP). As a result, the effect of 20% reduction of TP was less than 10% and it was almost ineffective for a year but it was reduced by up to 40% in case of scenario which DO is increased by 20%. Therefore, it was recommended to control the DO concentration, usually by applying re-aeration facility, rather than TP in artificial urban canal with seawater.

A Study on Treatment of Livestock Wastewater by Sequencing Batch Reactor (연속회본식 반응조를 이용한 축산폐수의 처리에 관한 연구)

  • 박석환;정문식
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.2
    • /
    • pp.62-66
    • /
    • 1992
  • This study was performed to investigate the characteristics of livestock wastewater excepting pig feces and the variation tendency of water quality and the removal efficiency of polluting materials by establishing the sequencing batch reactor in the field.The results were as follows, 1. The characteristics of livestock wastewater as follows: BOD: 619.80, COD$_{cr}$: 782.70, NH$_{3}$-N: 194.20, TKN: 232.81, PO$_{4}$-P: 24.10, T-P: 215.14 (mg/l) 2. During the reaction, negative correlation existed between pH and dissolved oxygen concentration. 3. The removal efficiency of the organic material by the index of BOD and COD was about 90%. 4. Nitrogen removal efficiency was 65.6% by total Kjeldahl nitrogen index, and phosphorous removal efficiency was about 47% by PO$_{4}$-P concentration.

  • PDF

Community Structure of Free-living Marine Nematodes in the Area of Agar-Producing Alga Ahnfeltia Tobuchiensis Field (Starka Strait, Peter the Great Bay, East Sea)

  • Pavlyuk, Olga;Trebukhova, Yulia
    • Ocean Science Journal
    • /
    • v.42 no.3
    • /
    • pp.165-170
    • /
    • 2007
  • The structure of the nematodes communities has been studied in the sediments on two sites located outside and under the layer of Ahnfeltia tobuchiensis (Kanno and Matsubara 1932; Makijenko 1970). Bottom sediments at the stations were represented by sands with a different degree of silting. Specific structure of nematodes at the stations was significantly different under the similar environmental conditions (water depth, dissolved oxygen saturation, salinity, temperature of the bottom layer and organic carbon content inside of the sediment). Nematodes dominated (75.7 %) in meiobenthos community under the layer of A. tobuchiensis where concentration of silt particles was 12 %. Representatives of the family Comesomatidae were dominant. Low index of species diversity and high Simpson domination index were detected in this community. Under a layer of A. tobuchiensis with the thickness of 30 cm concentration of the silt particles was 5.39 %; nematodes density was low and made 32.1 % of the general density of meiobenthos. Species of the families Xyalidae and Monoposthiidae were dominant. Outside of A. tobuchiensis, field percentage of silt particles was minimal (3.1 %) and representatives of families Cyatholaimidae and Axonolaimidae dominated. The specific structure of nematodes in this type of the ground is characterized by high index of species diversity and low level of domination.