• Title/Summary/Keyword: Dissolution rates

Search Result 180, Processing Time 0.029 seconds

Polymorphism of Sulpiride and Its Pharmaceutical Applications ( III ) -Dissolution Kinetics of Sulpiride Polymorphs- (Sulpiride의 Polymorphism 및 그 약제학적(藥劑學的) 연구(硏究) (제3보)(第三報) -Polymorph에 따른 용출속도(溶出速度)-)

  • Lee, Min-Hwa;Kim, Kil-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.12 no.3
    • /
    • pp.55-63
    • /
    • 1982
  • The dissolution kinetics for polymorphs of sulpiride, the effect of polyethylene glycol 4000 on the dissolution kinetics of sulpiride polymorphs and the dissolution rate difference between the tablets of polymorph form I and form II were investigated. The results could be summerized as followings: 1. The dissolution rates of two polymorphs of sulpiride were significantly different and the thermodynamic parameters calculated from dissolution kinetics were as follows; transition temperature $98^{\circ}C$, enthalpy change, -2.108 kcal/mole, free energy change, -783 cal/mole $(31.0^{\circ}C)$. 2. The dissolution rates of the two polymorphs of sulpiride containing polyethylene glycol 4000 were significantly diefferent in 0.01N HCl but the effect of polyethylene glycol on the dissolution rates of two polymorphs was not significant at low concentration of polyethylene glycol 4000. The study on the effect by stirring speed showed that at lower stirring speed the promotion rate of dissolution of polymorph form I is greater than that of form II. 3. In the case of tablets the dissolution rates of polymorph form I of sulpiride was two fold as compared with the results obtained from form II.

  • PDF

Numerical study of CO2 hydrate dissolution rates in the ocean: Effect of pressure, temperature, and salinity

  • Kyung, Daeseung;Ji, Sukwon;Lee, Woojin
    • Advances in environmental research
    • /
    • v.4 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • In this study, we numerically investigated the effect of pressure (100-250 bar), temperature (274-288 K), and salinity (3.5% w/w electrolytes) on $CO_2$ hydrate dissolution rates in the ocean. Mass transfer equations and $CO_2$ solubility data were used to estimate the $CO_2$ hydrate dissolution rates. The higher pressure and lower temperature significantly reduced the $CO_2$ hydrate dissolution rates due to the increase of $CO_2$ particle density. In the high salinity condition, the rates of $CO_2$ hydrate dissolution were decreased compared to pure water control. This is due to decrease of $CO_2$ solubility in surrounding water, thus reducing the mass transfer of $CO_2$ from the hydrate particle to $CO_2$ under-saturated water. The results obtained from this study could provide fundamental knowledge to slow down or prevent the $CO_2$ hydrate dissolution for long-term stable $CO_2$ storage in the ocean as a form of $CO_2$ hydrate.

Elastic Moduli and Dissolution Rates of Resorbable Na2O-MgO-P2O5 Bioglasses (Na2O-MgO-P2O5 생체 유리의 탄성계수와 용해도)

  • ;T.D.Taylor
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.6
    • /
    • pp.850-854
    • /
    • 1989
  • The elastic moduli and dissolution rates of 15 glasses with different mole ratios of sodium-magnasium-phosphate as potential non-toxic biomaterials were investigated. In this study, a 3-pint bending test, sonic resonance technique, and theoretical calculation were used to evaluate the modulus of elasticity. The dissolution rates at 37$^{\circ}C$(human body temperature) were determined by the measurement of mass changes in each sample for 24 weeks.

  • PDF

Design and Gastrointestinal Permeation of Non-aqueous Biphenyl Dimethyl Dicarboxylate Oral Liquid Preparations (비페닐디메칠디카르복실레이트의 비수성 경구 액상제제의 설계 및 위장관 투과성)

  • Kim, Hye-Jin;Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.2
    • /
    • pp.119-125
    • /
    • 2000
  • In an attempt to develop a non-aqueous liquid formulation of practically insoluble biphenyl dimethyl dicarboxylate (DDB), dissolution and permeation studies were performed. Various non-aqueous DDB solutions were formulated and filled into empty hard capsules. Dissolution rates of a new formulation were compared with those of commercially available DDB preparations using one and eight dose units. Dissolution rates after 2 hr of DDB tablets (DDB 25 mg), hard capsules (DDB 7.5 mg) and soft capsules (DDB 7.5 mg) on market and new formulation (DDB 7.5 mg) were 6.3, 15.0, 84.5 and 98.0%, respectively. Higher doses (8 units) resulted in a supersaturation within one hr of dissolution, and dissolved amounts were reduced markedly. Due to the saturation and precipitation, a directly proportional dose-dissolution relationship was not observed. The addition of copolyvidone and/or glycyrrhizic acid ammonium salt to DDB solution in polyethylene glycol 300 and 400 inhibited the formation of precipitates during dissolution and markedly enhanced the rabbit duodenal permeation of DDB. From the site-specific gastrointestinal permeation studies, it was found that permeation rates of DDB after mixing of non-aqueous DDB solutions with aqueous buffered solutions were faster in the order of $rectal\;<\;colonic\;{\risingdotseq}\;ileal\;{\risingdotseq}\;duodenal\;<\;jejunal\;<\;gastric$.

  • PDF

Effect of Carrier on Dissolution Characteristics of Indomethacin from its Coprecipitates (Indomethacin Coprecipitate 중 Indomethacin 용출(溶出)에 미치는 Carrier의 영향(影響))

  • Ku, Young-Soon;Ahn, Young-Mee
    • Journal of Pharmaceutical Investigation
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 1984
  • Effects of water soluble carrier on the dissolution characteristics of indomethacin coprecipitates were investigated. Water soluble carriers used were polyvinylpyrrolidone, dextrose, mannitol and their mixtures of various ratios. The dissolution rates of indomethacin from coprecipitate with ratios of drug-to-carrier, kinds of carrier and ratios of carriers were as follows: 1. The dissolution rates increased proportionally to the ratios of carrier in the case of both single and combined carrier, and the dissolution rate of coprecipitate with the combined carrier was more rapid than that with single carrier. 2. The combined carrier of PVP-dextrose (1 : 2) in the case of the coprecipitate of drug-to carrier (1 : 1) and PVP-dextrose (4 : 1) in the case of the coprecipitate of drug-to carrier (1 : 3) yield the most rapid dissolution rate. 3. The dissolution rate of indomethacin was the most markedly enhanced in the case of the combined carrier of PVP and dextrose.

  • PDF

Studies on Dissolution Rate of Drugs (XVI)-Sustained Release of Indomethacin from Polymer Solid Dispersions (의약품의 용출에 관한 연구(제 16보)-고분자 고체분산체로부터 인도메타신의 지속 방출-)

  • Song, Ra-Mi;Kim, Soo-Uck;Seo, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.2
    • /
    • pp.63-69
    • /
    • 1989
  • Dissolution characteristics of indomethacin (IMC) from hydrophobic polymer solid dispersions were investigated. IMC-polyvinyl chloride (PVC) and IMC-ethylcellulose (EC) solid dispersions were prepared. The dissolution patterns of pure IMC, IMC-PVC and IMC-EC solid dispersions prepared at various ratios (1:1, 1:3, 1:5, 1:9 and 1:19 w/w), and those of corresponding physical mixtures were compared. It was found that the dissolution rates of IMC from solid dispersions with PVC or EC decreased in the order of 1:1>1:3>1:5>1:9>1:19 as the drug to polymer ratios decreased. Also the dissolution rates of IMC from EC solid dispersions increased according to flow rate, but PVC solid dispersions were not affected significantly. After all, PVC and EC matrices could be applied in sustained-release preparation of IMC.

  • PDF

Relationship Between Dissolution Patterns of Carbamazepine Tablet and Dissolution Medium Composition (카르바마제핀 정제 용출패턴과 용출액 조성과의 상관성)

  • Lee, Hyeon-Tae;Kim, Jeong-Ho;Kim, Hyun-Joo;Sah, Hong-Kee
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.3
    • /
    • pp.185-192
    • /
    • 2004
  • The objective of this study was to evaluate the effects of surfactant type and concentration upon dissolution rates of carbamazepine from an immediate-release tablet. The dissolution media used in this study were aqueous solutions containing 0.1-2% sodium lauryl sulfate, cetyltrimethylammonium bromide, or polysorbate 80. The solubility of carbamazepine in the dissolution media was determined at first. A dissolution study was then conducted by using the USP dissolution apparatus II (paddle method) with an agitation rate of 75 rpm. Aliquots of the dissolution media were taken at predetermined time intervals, and the amount of carbamazepine dissolved was measured spectrophotometrically at 285 nm. The dissolution data obtained were fitted into a biphasic exponential equation with four parameters. Excellent correlations were observed between the experimental data and the theoretical ones predicted by the equation. This equation permitted the calculation of $T_{50%}$ (the time required for dissolving 50% of carbamazepine) under various experimental conditions. Differentiation of the equation also led to the attainment of dissolution rates at dissolution time points. The addition of a surfactant to an aqueous solution led to increasing the solubility of carbamazepine by 3- to 12-folds, depending upon its type and concentration. This event also resulted in enhancing the magnitude of a sink condition during the dissolution study. As a result, the dissolution rate of carbamazepine was affected by the aqueous surfactant concentration in a proportional manner. Subsequently, $T_{50%}$ values declined rapidly, as the surfactant concentration increased. Such effects were observed in decreasing order of sodium lauryl sulfate, cetyltirmethylammonium bromide, and polysorbate 80. These results clearly demonstrated that it was possible to tailor a dissolution rate and $T_{50%}$ of carbamazepine by manipulating the type and concentration of a surfactant. Relevant information would be beneficial to setting up dissolution specifications for poorly water-soluble drug products.

Study on Polymorphism of Cimetidine (시메티딘의 다형에 관한 연구)

  • Sohn, Young-Taek;Kim, Ki-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.2
    • /
    • pp.81-87
    • /
    • 1993
  • Five crystalline forms of cimetidine, four anhydrous and a monohydrate, have been prepared, and their thermal behavriours have been studied by differential thermal analysis and thermo-gravimetry. The dissolution rates of the five forms were determined in distilled water at $37^{\circ}C$. The results showed a significant difference in the dissolution rate. Polymorphic transformation occurred spontaneously during storage at room condition and was accelerated by applied energy during formulation process-milling.

  • PDF

Three-dimensional Computational Modeling and Simulation of Intergranular Corrosion Propagation of Stainless Steel

  • Igarashi, T.;Komatsu, A.;Motooka, T.;Ueno, F.;Yamamoto, M.
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.105-111
    • /
    • 2021
  • In oxidizing nitric acid solutions, stainless steel undergoes intergranular corrosion accompanied by grain dropping and changes in the corrosion rate. For the safe operation of reprocessing plants, this mechanism should be understood. In this study, we constructed a three-dimensional computational model using a cellular automata method to simulate the intergranular corrosion propagation of stainless steel. The computational model was constructed of three types of cells: grain (bulk), grain boundary (GB), and solution cells. Model simulations verified the relationship between surface roughness during corrosion and dispersion of the dissolution rate of the GB. The relationship was investigated by simulation applying a constant dissolution rate and a distributed dissolution rate of the GB cells. The distribution of the dissolution rate of the GB cells was derived from the intergranular corrosion depth obtained by corrosion tests. The constant dissolution rate of the GB was derived from the average dissolution rate. Surface roughness calculated by the distributed dissolution rates of the GBs of the model was greater than the constant dissolution rates of the GBs. The cross-sectional images obtained were comparable to the corrosion test results. These results indicate that the surface roughness during corrosion is associated with the distribution of the corrosion rate.

Effect of Stress Waveform on Corrosion Fatigue Crack Propagation in High Strength Steels-the Role of Anodic Dissolution Mechanism (고장력강의 부식피로균열전파에 미치는 하중파형의 영향과 양극용해기구의 역할)

  • 하회석;이성근
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.147-155
    • /
    • 1993
  • The effect of stress waveforms on corrosin fatigue and the role of dissolution mechanism in 3NilCr steel and 20Ni maraging steel have been investigated in aerated 3% NaCl solution and synthetic seawater under sinusoidal, triangular, square, positive sawtooth, negative sawtooth, and trapezoidal stress waveforms with open circuit at frequency of 1Hz and stress ratio of 0.1. The crack growth rates under square waveform were substantially lower than under sinusoidal and triangular waveforms, but the crack growth rates under sinusoidal waveform were slightly higher under triangular waveform. For a given frequency the growth rates under the positive sawtooth waveform are higher than those under the negative sawtooth waveform. The fatigue crack growth rates of most specimens were in good agreement with the values calculated by the model based on the dissoultion mechanism.

  • PDF