• Title/Summary/Keyword: Dissolution of phosphates

Search Result 4, Processing Time 0.017 seconds

Effects of Limestone on the Dissolution of Phosphate from Sediments under Anaerobic Condition (혐기성 퇴적물에서 석회석이 인산염용해에 미치는 영향)

  • Kim, Hag Seong;Park, Juhyun
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.81-86
    • /
    • 2007
  • This paper describes a study on the role of limestone which might affect the dissolution of phosphates when phosphate containing sediments are put under anaerobic conditions. A small quantity of calcium hydroxy-apatite, alone or mixed with limestone powder, was put in contact with aqueous solution of acetic acid or carbonic acid, and variations of phosphate concentration were determined time dependantly. The results showed that the concentration was remarkably low in the presence of limestone, signifying that the coexistence of limestone suppresses the dissolution of phosphate by organic acid and/or carbonic acid. Separate experiments conducted by developing an anaerobic condition, after mixing lake sediments with dried leaves and limestone, showed that the existence of limestone suppressed the dissolution of phosphate. These results show that the application of limestone might be a useful measure to prevent deterioration of water quality originated from eutrophication by inhibiting the internal loading of P in eutrophic water-bodies.

Explanation of the Effect of Limestone on the Dissolution of a Phosphate with the Visual MINTEQ Model (Visual MINTEQ모델을 이용한 인산염의 용해에 미치는 석회석의 영향 규명)

  • Kim, Hag Seong;Jeong, Yeon Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.285-290
    • /
    • 2008
  • This study was done to explain the role of limestone which might intervene in the phosphorus cycle in a lake. The effects of limestone on the dissolution of phosphate were estimated by simulations with the computer model Visual MINTEQ, which is designed for the chemical equilibrium calculations. According to the calculations limestone shows remarkable effects for the suppression of phosphate dissolution. The limestone can suppress the dissolution of phosphates by sacrificing themselves to acids, and as a consequence can increase the hardness and alkalinity of the lake. Both hardness and alkalinity play an important role in reducing soluble P and thus alleviate the eutrophication potential.

Physico-Chemical Properties among Three Products of Granular Fused Magnesium Phosphate (세가지 입상(粒狀) 용성인비(熔成燐肥) 제품간(製品間)의 이화학적(理化學的) 특성(特性))

  • Lim, Dong-Kyu;Kim, Seok-Cheol;Lee, Sang-Kyu;Choi, Du-Hoi;Kang, Ui-Gum;Park, Kyeong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.113-123
    • /
    • 1996
  • This experiment was carried out to compare with the physico-chemical properties of granular fused magnesium phosphates which were two domestic products(Pungnong Biryo Industrial Co., LTD and Kyunggi Chemical Industrial Co., LTD) and a imported Chinese product. The changes of pH, distribution of particle size, disintegration in water and in soil, hardness in soil, chemical composition, and dissolution rates in water, in soil and in 2% citric acid solution were investigated. The changes in pH were bigger in Jungmun series(black volcanic soil), in the imported chinese product, and in Jungmun series with the larger quantities applied. The domestic products were lower in pH, calcium, alkalinity and 1/2N-HCl soluble silicate than the Chinese product but total(Aqua regia) soluble phosphate, 2% citric acid soluble phosphate, 1/2N-HCl soluble and 2% citric acid soluble magnesium, and 2% citric acid soluble manganese concentration were similar among the domestic products and the imported product. In particle sizes, Chinese product was the biggest, Kyunggi product was the next, and Pungnong product was the smallest. The changes of disintegration rate in water and in soil were smaller in Pungnong and Kyunggi products at the early days of dissolution, and there were decreased with the order of Kyunggi product> Chinese product> Pungnong product at the latter days. The hardness of the products in soil was the strongest in Kyunggi product, the next was Pungnong product and Chinese product was the weakest so as to hardly measurable. The changing dissolution rates of 2% citric acid soluble phosphate concentration of granular fused magnesium phosphate products were the highest in Kyunggi product and the lowest in Pungnong product at the early days, the three products were dissolved over 90% within 50 days, and there were no clear difference among the products after 70 days of dissolution. The dissolution rates of 2% citric acid soluble phosphate concentration of granular fused magnesium phosphate products in soil were the highest in Pungnong product and Chinese product was the lowest, but they were less than 60% in 100 days of dissolution.

  • PDF

Novel Calcium Phosphate Glass for Hard-Tissue Regeneration

  • Lee, Yong-Keun;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.sup2
    • /
    • pp.273-298
    • /
    • 2008
  • Purpose: The aim of this review is to introduce a novel bone-graft material for hard-tissue regeneration based on the calcium phosphate glass(CPG). Materials and Methods: CPG was synthesized by melting and subsequent quenching process in the system of CaO-$CaF_2-P_2O_5$-MgO-ZnO having a much lower Ca/P ratio than that of conventional calcium phosphates such as HA or TCP. The biodegradability and bioactivity were performed. Effects on the proliferation, calcification and mineralization of osteoblast-like cells were examined in vitro. Influence in new bone and cementum formations was investigated in vivo using calvarial defects of Sprague-Dawley rats as well as 1-wall intrabony defect of beagle dogs. The application to the tissue-engineered macroporous scaffold and in vitro and in vivo tests was explored. Results: The extent of dissolution decreased with increasing Ca/P ratio. Exposure to either simulated body fluid or fetal bovine serum caused precipitation on the surface. The calcification and mineralization of osteoblast-like cells were enhanced by CPG. CPG promoted new bone and cementum formation in the calvarial defect of Sprague-Dawley rats after 8 weeks. The macroporous scaffolds can be fabricated with $500{\sim}800{\mu}m$ of pore size and a three-dimensionally interconnected open pore system. The stem cells were seeded continuously proliferated in CPG scaffold. Extracellular matrix and the osteocalcin were observed at the $2^{nd}$ days and $4^{th}$ week. A significant difference in new bone and cementum formations was observed in vivo (p<0.05). Conclusion: The novel calcium phosphate glass may play an integral role as potential biomaterial for regeneration of new bone and cementum.