• Title/Summary/Keyword: Dissolution enhancement

Search Result 50, Processing Time 0.027 seconds

Immediate Drug Release Enhancement of Nateglinide Using Fumaric Acid (푸마르산을 이용한 나테글리니드 함유 속방출형 제형의 약물방출 개선에 관한 연구)

  • Lee, Sung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.506-512
    • /
    • 2017
  • The purpose of this study was to improve release rate and bioavailability of nateglinide formulation. Polymorphism selection and particle size control were performed to enhance formulation dissolution rate, and a pH modifier was included in the formulation to overcome pH-dependent solubility of nateglinide. The enhanced dissolution rate was characterized by using a dissolution test. The results showed that H-type raw material had a higher dissolution rate than that of B-type raw material. There was 6.2% difference in dissolution between the two materials at 60 min. With regard to particle size, raw material with a $1.13{\mu}m$ particle size showed a 20% faster release rate than that of raw material with a $2.28{\mu}m$ particle size. Furthermore, fumaric acid was included in formulation as a pH modifier. That addition produced a greater than 50% improvement in dissolution rate. In conclusion, dissolution rate of nateglinide can be enhanced by optimizing its polymorphism and particle size; moreover, a synergistic effect on the enhancement of dissolution rate is obtained by including fumaric acid, a pH modifier, in the formulation.

Studies on Dissolution Rate of Drugs(XXIII)-Ketoprofen-Polyethyleneglycol Solid Dispersion System- (의약품의 용출에 관한 연구(제23보)-폴리에틸렌글리콜 고체분산계로부터 케토푸로펜의 용출-)

  • Kim, Ji-Ho;Seo, Seong-Hoon;Kim, Soo-Uck
    • Journal of Pharmaceutical Investigation
    • /
    • v.21 no.1
    • /
    • pp.11-22
    • /
    • 1991
  • The purpose of this study was for the enhancement of dissolution rate of ketoprofen. The solid dispersions composed of ketoprofen(KP) and polyethylene glycol(PEG) 4000 or 6000 were prepared by fusion method at various ratios of KP to PEG (0.5 : 10, 1 : 10, 2 : 10, 3 : 10 and 4 : 10(w/w)) and their physical mixtures were also prepared at the above ratios. Dissolution tests, X-ray diffraction study and differential scanning calorimetry study were carried out. It was found that the dissolution rates of solid dispersion and physical mixture at any ratio of the two components discribed above were greater than that of the pure ketoprofen. X-ray diffraction studies of ketoprofen suggested that less than 1 to 10 ratio of ketoprofen to PEG4000 (or 6000) was required to dispersion amorphous state in the carrier. In addition, the studies of DSC showed that ketoprofen had a sharp endothermic peak at $94^{\circ}C$ but not for the solid dispersion at the same temperature.

  • PDF

Enhancement of Dissolution Properties through Formulations of Insoluble Drug Biphenyl Dimethyl Dicarboxylate (난용성약물 Biphenyl Dimethyl Dicarboxylate의 제제화를 통한 용출증대)

  • Lee, Soon-Ah;Song, Kyung;Park, Eun-Jin;Sohn, Dong-Hwan;Go, Geon-Il;Kim, Jae-Baek
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.1
    • /
    • pp.23-28
    • /
    • 1996
  • The dissolution characteristics of DDB were markedly enhanced by preparing solid dispersions of drug with polyethylene glycol 6000. Solid dispersions of various weight fraction were formed by a melting method. And various tablets$(A{\sim}E)$ were prepared from these solid dispersions with excipients (lactose, com starch, Avicel and PVP) by wet granulation method. There were no significant differences in dissolution rates between physical mixture and DDB alone. But dissolution rates of solid dispersions were $1.4{\sim}2.0$ times greater than that of DDB alone and $1.2{\sim}1.8$ times greater than those of a commercial tablet.

  • PDF

Solubilization and Dissolution Enhancement of Benzimidazole Antnelmintic Drugs by Cyclodextrin Complexation (시클로덱스트린류와의 복합체 형성에 의한 벤즈이미다졸계 구충 약물의 용해성 및 용출 증가)

  • 전인구;박인숙
    • YAKHAK HOEJI
    • /
    • v.37 no.3
    • /
    • pp.216-227
    • /
    • 1993
  • Complex formations of practically insoluble antelmintic drugs such as mebendazole (MBZ), albendazole (ABZ) and flubendazole (FBZ) with dimethyl-$\beta$-cyclodextrin (DM-$\beta$-CyD) and 2-hydroxypropyl-$\beta$-cyclodextrin (HP-$\beta$-CyD) together with $\alpha$-, $\beta$- and $\gamma$-cyclodextrins(CyDs) in duffered solutions were investigated by solubility method. $A_{L}$ type phase solubility diagrams were obtained in all cases except for the complexation (B$_{s}$, type) of FBZ with $\gamma$-CyD. The highest stability constants were obtained with DM-$\beta$-CyD, followed by $\alpha$-CyD > $\beta$-CyD > HP-$\beta$-CyD > $\gamma$-CyD for ABZ, and HP-$\beta$-CyD > $\gamma$-CyD > $\beta$-CyD > $\alpha$-CyD for FBZ at pH 1.2. On the other hand, solid dispersion systems of ABZ and FBZ with $\beta$- and DM-$\beta$-CyDs were prepared by solvent evaporation method and evaluated by dissolution, differential thermal analysis and powder x-ray diffractometry. The dissolution rates of ABZ- and FBZ-DM-$\beta$-CyD solid dispersions were much faster than those of drugs alone, corresponding physical mixtures and tablets on market both at pH 1.2 and 6.8. Although dissolution rates of all samples at pH 6.8 were by far lower than those obtained at pH 1.2, as explained by pH-solubility profiles for ABZ and FBZ, the dissolution rates at pH 6.8 of ABZ from $\beta$- and DM-$\beta$-CyD solid dispersions exceeded the respective equilibrium solubility (23.9 $\mu\textrm{g}$/ml). Fast dissolution of ABZ from solid dispersions with CyDs was attributed to the reduction of drug crystallinity and particle size which was supported by DTA and powder x-ray diffractometry. Consequently these results suggest that solid dispersion systems with CyDs may provide useful means to markedly enhance the solubility and dissolution of benzimidazole antelmintic drugs.

  • PDF

Improved Dissolution Characteristics of Ibuprofen Employing Self-Microemulsifying Drug Delivery System and Their Bioavailability in Rats (자가유화 약물전달시스템을 이용한 이부프로펜의 용출개선 및 흰쥐에서의 생체이용률 평가)

  • Kim, Hyung-Soo;Lee, Sang-Kil;Choi, Sung-Up;Park, Hye-Sook;Jeon, Hyun-Joo;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.1
    • /
    • pp.27-33
    • /
    • 2002
  • A self-microemulsifying drug delivery system(SMEDDS) composed of Cremophor $EL^{\circledR},\;Labrasol^{circledR}$, and Lauroglycol $FCC^{circledR}$ was prepared for the enhancement of solubility, dissolution rate and bioavailability of ibuprofen(IBP), which is water-insoluble but soluble in oils and surfactants. Phase diagram with various regions including microemulsion area was depicted. The SMEDDS was encapsulated in soft gelatin capsules and their dissolution characteristics in various media were observed in comparison to the generic products commercially available in the market. Soft capsules of SMEDDS formulation showed better dissolution profiles, especially in acidic condition, than the others. For the period of 1 hr dissolution in pH 1.2 medium, it reached over 70% dissolution from soft capsules, compared to less than 40% dissolution from commercial reference tablets. On the other hand, in vivo pharmacokinetic parameters were obtained after oral administrations of different IBP preparations to Sprague Dawley rats. SMEDDS formulation showed higher $C_{max}$ and greater $AUC_{0-5hr}$ than the suspension of reference tablet or IBP powder. Therefore, it is possible to conclude that a newly developed soft capsules employing SMEDDS provides an alternative preparation to improve oral bioavailability of IBP.

Enhancement of Dissolution Rates of Furosemide Solvent Deposition Matrixes by Solvent Deposition Method and Diuretic Effects in Rats (Solvent Deposition Method를 이용(利用)한 Furosemide 제제(製劑)의 용출증대(溶出增大) Rat에서의 이용효과(利用效果)에 관한 연구(硏究))

  • Ku, Young-Soon;Han, Gyu-Jung
    • Journal of Pharmaceutical Investigation
    • /
    • v.13 no.2
    • /
    • pp.73-87
    • /
    • 1983
  • The matrix affects the dissolution of furosemide, which is almost insoluble in the dissolution medium. In order to understand the effect of the matrix on the dissolution of furosemide, lactose, starch, $Avicel\;^{\circledR}pH\;101$, $Avicel\;^{\circledR}pH\;301$, $SiO_2$ and talc were used as the matrix and the solvent deposition method were used. The dissolution characteristics of four dissolution medium were compared to each other using various ratio of drug-to-matrix. The results are as follows: 1) Lactose was shown to be superior and talc was to be inferior to the other matrixes investigated. 2) A maximum dissolution rate and dissolution amount of furosemide were observed in 1 : 10 ratio of the drug-to-matrix. 3) $T_{80%}$ of 1 : 10 ratio of the drug-to-matrix in pH 7.2 was 1 min. from FM-lactose and 30 min. from FM-talc. $T_{50%}$ in pH 4.2 is 2 min. from furosemide-lactose and 150 min. from furosemide-talc. Total amount of furosemide in pH 1.2 at 30 min. were enhanced 13.3 fold in furosemide-lactose and 3.5 fold in furosemide-talc compared to the control. Diuretic action of those furosemide-lactose and furosemide-talc was also evaluated by monitoring changes in urinary excretion of sodium, potassium and urine volume in rat. The accumulated urine volume were enhanced 1.7 fold in furosemide-lactose (1.5) compared to the furosemide.

  • PDF

Enhancement of Dissolution Properties of Poorly Soluble Drugs(IV) -Micronization of Furosemide by Recrystallization Method- (난용성 약물의 용출 증가(제4보) -재결정법에 의한 푸로세미드의 미세화-)

  • Koh, Ik-Bae;Shin, Sang-Chul;Oh, In-Joon
    • Journal of Pharmaceutical Investigation
    • /
    • v.18 no.2
    • /
    • pp.55-59
    • /
    • 1988
  • The size of furosemide was reduced by the recrystallization method in order to increase the dissolution rate of the drug. Surfactants or hydrophilic polymers were used to suppress the aggregation in the crystal formation-growth process of microparticles by dispersing action. Dissolution rate of microparticles increased remarkably due to the size reduction of microparticle. The particle size decreased with increasing the concentration of the drug and the dispersing agents, i.e., surfactants or hydrophilic polymers. No polymorphic transition occurred during the microcrystallization process, but the habit of crystal formation was altered in the case of anionic surfactant.

  • PDF

Enhancement of Dissolution Rates of Indomethacin Solvent Deposited on Excipients by Solvent Deposition Method (Indomethacin제제(製劑)의 용출속도증가(溶出速度增加)를 위한 Solvent Deposition Method의 이용(利用))

  • Ku, Young-Soon;Huh, Jin-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.12 no.3
    • /
    • pp.74-87
    • /
    • 1982
  • To evaluate the pharmaceutical aspects of solvent deposition method where drug is solvent deposited on the surface of excipients, a study has been made on dissolution characteristics of indomethacin solvent deposited on lactose and potato starch. In a solvent deposition system, the drug-to-excipient ratio and kind of excipient effect much on dissolution rates of indomethacin. The experimental results are as follows: 1) Lactose was shown to be superior to potato starch as excipients in indomethacin solvent deposited. 2) Total amount of indomethacin dissolved from solvent deposition systems at 30 minutes were enhanced about 5 to 23 times compared with that of pure indomethacin. 3) Increased dissotion amount of indomethacin from the solvent deposition systems were observed to be alike in the systems where the drug-to-excipient weight ratios were 1 : 5, 1 : 7 and 1 : 10.

  • PDF

Dissolution Enhancement of Fenticonazole Nitrate from Hydrophilic Polymer Solid Dispersions (친수성 고분자와의 고체분산체로부터 질산펜티코나졸의 용출 증가)

  • Kim, Young-Il;Kim, Seung-In;Choi, Jae-Yoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.2
    • /
    • pp.109-116
    • /
    • 1989
  • Solid dispersion of fenticonazole nitrate (FN) with poloxamer 407, polyethylene glycol 6000, povidone (K-90) were prepared by the solvent method. To characterize the state of the drug in solid dispersions, the x-ray diffractometry and differential scanning calorimetry were carried out. The identification of these systems suggested that FN in the poloxamer 407 system remained in crystalline state, and the drug in the PVP system was amorphous. A marked increase in the dissolution rate of FN was attained by dispersing the drug in the hydrophilic polymers used, and the dispersion with poloxamer 407 was superior to the other two carriers in releasing the drug into solution.

  • PDF

Enhanced Dissolution and Permeation of Biphenyl Dimethyl Dicarboxylate Using Solid Dispersions (고체분산체로부터 비페닐디메칠디카르복실레이트의 용출 및 투과 증전)

  • Moon, Jee-Hyun;Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.3
    • /
    • pp.227-234
    • /
    • 1999
  • Solid dispersions were prepared to increase the dissolution rate of biphenyl dimethyl dicarboxylate (DDB) using water-soluble carriers such as povidone, copolyvidone, $2-hydroxypropyl-{\beta}-cyclodextrin (HPCD)$, sodium salicylate or sodium benzoate by solvent evaporation method. Solid dispersions were characterized by infrared spectrometry, differential scanning calorimetry (DSC) and powder X-ray diffractometry, dissolution and permeation studies. DDB tablets (7.5 mg) were prepared by compressing the powder mixtures composed of solid dispersions, lactose, com starch, crospovidone and magnesium stearate using a single-punch press. DDB capsules (7.5 mg) were also prepared by filling the mixtures in empty hard gelatin capsules (size No.1). From the DSC and powder x-ray diffractometric studies, it was found that DDB was amorphous in the HPCD or copolyvidone solid dispersions. Dissolution rates after 10 min of DDB alone and solid dispersions (1 : 10) in sodium benzoate, sodium salicylate and copolyvidone were 11.8, 23.5, 22.8 and 82.5%, respectively. Dissolution rates of DDB after 30 min from 1 : 10 and 1 : 20 copolyvidone solid dispersions were 80.5 and 95.0%, respectively. For the DDB tablets prepared using solid dispersions (1 : 20), the initial dissolution rate was dependent on carrier material, and was ranked in order, $Kollidon\;30\;{\ll}$ copolyvidone < HPCD. For the HPCD solid dispersion tablets, dissolution rate reached 97.4% after 15 min, but thereafter slowly decreased to 80.7% after 2 hr due to the precipitation of DDB. However, in the case of copolyvidone solid dispersion tablets, dissolution increased linearly and reached 93.4% after 2 hr. Reducing the volume of test medium from 900 to 300 ml markedly decreased the dissolution rate of the tablets containing 1 : 20 HPCD solid dispersions and 1 : 10 copolyvidone solid dispersion. For 1 : 20 copolyvidone solid dispersion tablets, there was no significant change in dissolution rate up to 1 hr with different volumes of test medium. Preparation of the copolyvidone solid dispersion (1 : 20) in capsules markedly delayed the dissolution (31.2 % after 2hr) due to the limited diffusion within capsules. The permeation rate $(13.4\;g/cm^2\;after\;8\;hr)$ of DDB through rabbit duodenal mucosa from copolyvidone solid dispersion (1 : 10) was markedly enhanced, when compared with drug alone or physical mixtures. From overall findings, DDB formulations containing copolyvidone solid dispersions (1 : 20) could be used to remarkably improve the dissolution rate in dosage form of powders and tablets.

  • PDF