• Title/Summary/Keyword: Dissolution condition

Search Result 230, Processing Time 0.023 seconds

Alkaline Dissolution and Dyeing Properties of Sea-island Type Ultrafine Nylon Fiber (해도형 초극세 나일론 섬유의 알칼리 용출 및 염색성)

  • Lee, Hae-Jung;Lee, Hyo-Young;Park, Eun-Ji;Choi, Yeon-Ji;Kim, Sund-Dong
    • Textile Coloration and Finishing
    • /
    • v.22 no.4
    • /
    • pp.325-331
    • /
    • 2010
  • The alkaline dissolution behavior of sea-island type ultrafine nylon fiber were dependent on the concentration of NaOH and treatment time, and the most appropriate condition for alkaline dissolution was to treat with 20g/l NaOH for 30 min at $80^{\circ}C$. The dyeing properties of sea-island type ultrafine nylon fiber and regular nylon fiber were examined with 3 different types of acid dyes in this study. The dye uptakes of ultrafine nylon fiber were higher than regular nylon fiber because of large surface area per unit mass, which increased as the dye bath pH decreased. The dyeing rates on ultrafine nylon fiber were faster and dye exhaustions were higher than regular nylon fiber, however color strength and rating of wash fastness were lower. It was also found that levelling type acid dye showed fast dyeing rate on both nylon fibers than metal-complex and milling type acid dyes.

Dissolution of Mo/Al Bilayers in Phosphoric Acid

  • Kim, In-Sung;Chon, Seung-Whan;Kim, Ky-Sub;Jeon, Il-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1613-1617
    • /
    • 2003
  • In the phosphoric acid based etchant, the dissolution rates of Mo films were measured by microgravimetry and the corrosion potentials of Mo and Al were estimated by Tafel plot method with various concentrations of nitric acid. Dissolution rate of Mo increased with the nitric acid concentration and reached a limiting value at high concentration of nitric acid in ambient condition. Corrosion potentials of Mo and Al shifted to positive direction and the difference between potentials of both metals was about 1,100 mV and 1,200 mV with 1% and above 4% of $HNO_3$, respectively. For a Mo/Al bilayers, the dissolution rate inversion is the main reason for good taper angle in shower etching process. Taper angles are observed by scanning electron microscope (SEM) after wet etching process for Mo/Al layered films with different concentrations of $HNO_3$. In the etch side profile, it was found that Al corroded faster than Mo below 4% of $HNO_3$ in dip etching process, however, Mo corroded faster above 4%. Trend for variation of taper angle of etched side of Mo/Al layered film can be explained by considering the effect corrosion rates of both metals with various concentrations of $HNO_3$.

Dissolution Characteristics of Magnesite Ore in Hydrochloric Acid Solution and Removal of Impurity (마그네사이트 광석(鑛石)의 염산용해(鹽酸熔解) 특성(特性) 및 불순물(不純物) 제거)

  • Eom, Hyoung-Choon;Park, Hyung-Kyu;Kim, Chul-Joo;Kim, Sung-Don;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.18 no.6
    • /
    • pp.38-45
    • /
    • 2009
  • Dissolution characteristics of magnesite ore in hydrochloric acid solution and removal of impurity were investigated. The dissolution yield increased with increasing temperature and with decreasing particle size. The optimum conditions for dissolution were found to be reaction period of 120 min, reaction temperature of $80^{\circ}C$ and mean particle size of 100. Under optimal dissolution condition the extraction of Mg was 98%. It was found that most of Si and Al exist in the residue, and they can be removed by filtering. Dissolved impurity ions were precipitated as metal hydroxides by pH adjustment. Polymers were used as coagulants for metal hydroxides and the suitable coagulant dosage was 1mg/100ml of non-ionic polymer.

Efficient Micro-Ozone-Bubble Generation by Improving Ozone Dissolution Tank Structure (오존용해탱크 구조 개선을 통한 효율적인 마이크로오존버블 생성)

  • Park, Yong-hwa;Lee, Gwang-hi;Jang, Am
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.549-555
    • /
    • 2017
  • The purpose of this study is to investigate how ozone-dissolution-tank structure affects micro-ozone-bubble distribution, energy consumption and water treatment efficiency. The partition walls inside the ozone-dissolution-tank generate pressure changes, shear forces, and swirling flows, which change the size of the bubble diameter. The size of the bubble diameter differs by 10.5% depending on the partition walls. Changes in ozone-bubble diameter are related to energy consumption. As the ozone-bubble becomes smaller, the bubble generation energy increases, but the ozone production energy decreases as the dissolution efficiency increases. Therefore, an ozone-dissolution-tank should be determined by means of an optimal condition producing a micro-ozone-bubble with a minimum sum of bubble generation energy and ozone production energy. The energy consumed to inject the same amount of ozone into the effluent differs by 2.5% depending on the partition walls. However, considering the water treatment efficiency, the conditions for selecting the ozone-dissolution-tank are variable. This is because the free radicals that increase as the ozone-bubble gets smaller are very efficient for water treatment. Even at the same ozone injection concentration, the water treatment efficiency differs by 10.4% according to the partition walls. Therefore, we have studied ozone-dissolution-tank structure which produces reasonable ozone-bubble considering water treatment efficiency and energy efficiency.

Formulation of Sustained-release Tablets of Felodipine using Hydrophilic Polymers and Non-ionic Surfactants (친수성고분자 및 비이온성 계면활성제를 이용한 펠로디핀 서방정제의 설계)

  • Lee, Jin-Kyo;Yang, Sung-Woon;Lee, Bong-Sang;Jeon, Hong-Ryeol;Lee, Jae-Hwi;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.4
    • /
    • pp.271-276
    • /
    • 2006
  • Felodipine, a calcium-antagonist of dihydropyridine type, is a poorly water soluble drug and has very low bioavailability. As preceding studies, use of solid dispersion systems and surfactants(solubilizers) has been suggested to increase dissolution and to improve bioavailability of felodipine. But in case of solid dispersion systems, large amount of toxic organic solvents should be used and manufacturing process time become longer than conventional process. In case of using surfactants, as time elapsed, decreasing of dissolution rate of felodipine due to crystallization has been reported. In this study, Copovidon as a hydrophilic polymer and $Transcutol^{\circledR}$ as a surfactant were combined to formulations if order to increase dissolution of felodipine and conventional wet granulation process were applied to manufacturing of formulations. The effect of Copovidon and $Transcutol^{\circledR}$ on the dissolution oi felodipine was investigated in-vitro. When Copovidon and $Transcutol^{\circledR}$ used simultaneously, the dissolution rate of felodipine was prominently increased compared with when used separately and the maximum increase in the dissolution of felodipine was 5.8 fold compared to control. This is most probably due to synergy effect by combination of Copovidon and $Transcutol^{\circledR}$. Felodipine sustained release tablets were successfully formulated using several grades of HPMC as a release retarding agent. The stability of felodipine sustained release tablet was evaluated after storage at accelerated condition($40^{\circ}C/75%\;RH$) for 6months in HDPE(High density polyethylene) bottle. Neither significant degradation nor change of dissolution rate for felodipine was observed after 6months. In conclusion, felodipine sustained release tablet was successfully formulated and dissolution of felodipine, poorly water soluble drug, was prominently increased and also stability was guaranteed by using combination system of hydrophilic polymer and surfactant.

Cytotoxicity Evaluation on Hydrogels for Medical Devices based on the International Organization for Standardization (국제표준화기구 기준에 의한 의료기기용 하이드로겔의 세포독성 평가)

  • Kim, Hyun-Ki;Kim, Ye-Tae;Cho, Yang-Ha;Roh, Hye-Won;Kim, Min-A;Kim, So-Yeon;Huh, Kang-Moo;Park, Jeong-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.2
    • /
    • pp.127-131
    • /
    • 2009
  • Hydrogels for medical devices such as hydrophilic dressing, moisturizing healing band, hydrophilic intravenous catheter and soft contact lens were evaluated for their cytotoxicity according to the International Organization for Standardization (ISO) procedures. To test indirect cytotoxicity of hydrogel products, dissolution medium and dissolution condition were selected based on the guideline for medical devices. Cytotoxicity was low in all the case of hydrogel products. Soft contact lens showed no significant difference in dissolution between complete medium and saline. Currently, there is no specific guidelineto test hydrogel for medical devices in Korea with consideration of characteristics of hydrogel. Thus, proper method of cytotoxicity evaluation should be selected depending on the characteristics and usages of hydrogels for medical devices.

Dissolution of Glibenclamide Polymorphs (글리벤클라미드 결정다형의 용출)

  • Sohn, Young-Taek;Um, Bo-Young
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.3
    • /
    • pp.233-239
    • /
    • 1997
  • Glibenclamide is a second generation sulfonylurea that is orally active as a hypoglycemic drug. It exists as a crystalline powder which is sparingly soluble in water. It was investigated that the potential of glibenclamide to exhibit polymorphism. Three polymorphic modifications (form 1, form 2 and form 3) and three pseudopolymorphic modifications (form 4, form 5 and form 6) were obtained by crystallization from different organic solvents. The isolated crystal forms were characterized by differential scanning calorimetry(DSC), thermogravimetric analysis(TGA) and X-ray crystallography powder diffraction studies. Form 1 was the most stable and melt at $175.4^{\circ}C$. Form 2 was metastable and melt at $151.0^{\circ}C$. Form 3 was a new polymorphic modification because it was different from form 1 and form 2 in X-ray crystallography powder diffraction data. Form 4 was a 1 : 7(toluene : glibenclamide) toluene solvate; form 5 was a 1 : 5(toluene : glibenclamide) toluene solvate; form 6 was a 3 : 8(pentanol : glibenclamide) pentanol solvate. All forms were stable in 3-month storage under 0% or 100% humidity condition. The dissolution rate of form 4 was highest; those of form 2, form 3, form 1, form 5 and form 6 followed.

  • PDF

Effect of Sn Addition on the SCC Properties of Al-Cu-Mn Cast Alloy (Al-Cu-Mn 주조합금의 SCC 특성에 미치는 Sn 첨가의 영향)

  • Kim, Kwang-Nyeon;Kim, Kyung-Hyun;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.436-441
    • /
    • 2002
  • Effect of Sn addition on the stress corrosion cracking(SCC) resistance of the Al-Cu-Mn cast alley was investigated by C-ring teat and electrical conductivity measurement, The electrical conductivity and SCC resistance increased by Sn addition. The alley containing 0,10%Sn showed maximum electrical conductivity and the best SCC resistance. At the same composition, the electrical conductivity and SCC resistance increased from peak aged condition to ever aged condition. The PFZ and coarse precipitates along the grain boundary were observed from TEM micrographs. The fracture mode of the alloy was confirmed as intergranular type and showed brittle fracture surface. The SCC mechanism of the alloy was concluded as the anodic dissolution model, The maximum hardness was increased from 130Hv in the Sn-free alloy to 156Hv in the 0.10%Sn added alloy.

STORAGE OF BROCCOLI BY MAKING THE WATER STRUCTURED -Suppression of metabolism-

  • Oshita, S.;Seo, Y.;Kawagoe, Y.;Rahman, M.A.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.918-925
    • /
    • 1996
  • The effect of structured water by dissolution of xenon was examined from the view point of the suppression of both browning and respiratory metabolism of broccoli. The structured water is formed duet to hydrophobic interaction when xenon gas dissolves into water. NMR measurements were carried out to determine proton spin-spin relaxation time, T2, for water. There was a difference in proton T2 between distilled water and structured water. This can be interpreted as the change of water structure. Fro the broccoli cut in half stored for 16 days at 279K, the section color did not change appreciably for the sample whose water was structured by dissolution of xenon whose initial partial pressure was 0.39MPa. In contrast to this, the browning of section surface was observed for the sample stored under the condition of nitrogen gas at the same partial pressure as xenon and for the sample stored under atmospheric condition . These results led to the conclusion that the suppression of b owning by oxidation was due to structured water but not to applied pressure. Adding to this, the water structured by xenon has resulted in suppression of respiratory metabolism of broccoli.

  • PDF