• Title/Summary/Keyword: Dissipation Factor

Search Result 394, Processing Time 0.021 seconds

Analysis of Insulation Characteristics of Low-Voltage Induction Motors Fed by Pulse-Controlled Inverters (인버터 구동형 저압 유동전동기의 절연특성 분석)

  • 박도영
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.195-198
    • /
    • 2000
  • In this paper the insulation characteristics test results of 25 low-voltage induction motors($3\phi$, 5HP, 380V) are presented. Five different types of insulation techniques are applied to 25 motors. The maximum partial discharge (PD) magnitude ($\textrm{Q}_{m}$) discharge inception voltage (DIV) dissipation factor tip-up ($\Delta$tan$\delta$) and rate of change in AC current($\Delta$I) are measured by PD and AC current tests. Also the insulation breakdown tests by high voltage pulse are performed and the corresponding breakdown voltage are obtained.

  • PDF

Comparison of Nondestructive and Destructive Tests in High Voltage Motor Stator Windings (고압전동기 고정자 권선에서 비파괴와 파괴시험의 비교)

  • Ju, Young-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2097-2100
    • /
    • 1999
  • Nondestructive and destructive tests were performed the stator windings of three high voltage motors prior to the rewind. Nondestructive tests included ac current increase rate($\Delta$I), dissipation factor(${\Delta}tan{\delta}$), and maximum partial discharge(Qm) The destructive tests included breakdown at three phases with ac voltage. Flashover occurred between the connected winding of endwinding and the stator flame. In two cases creeping discharge occurred between the individual phase windings and the wedges In the stator ends. The results of destructive tests could rarely be determined the breakdown voltage.

  • PDF

Dielectric, Electrical Properties of $TiO_2-SnO_2$ Thin Films Fabricated using Sol-Gel Method (솔젤법에 의해 제작된 $TiO_2-SnO_2$ 박막의 유전적, 전기적 특성)

  • You, Do-Hyun;Lim, Kyung-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.79-81
    • /
    • 2004
  • $TiO_2-SnO_2$ thin films are fabricated using sol-gel method. The thickness of thin films increase about $0.03{\sim}0.04{\mu}m$ every a dipping. The permittivity and dissipation factor of $TiO_2-SnO_2$ thin films decrease with increasing frequency. Thin films show semiconductive characteristics above $400^{\circ}C$.

  • PDF

Comparison of 1-g and Centrifuge Model Tests for Similitude Laws (상사법칙 검증을 위한 1-g 모형실험과 원심모형실험의 비교 연구)

  • Kim Sung-Ryul;Hwang Jae-Ik;Kim Myoung-Mo;Ko Hon-Yim
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.59-67
    • /
    • 2006
  • The centrifuge and 1-g shaking table tests were performed simultaneously to compare the dynamic behaviors of loose sands of the same geotechnical properties. The prototype soils were 10 m thick liquefiable loose sands. The geometric scaling factors were 20 for 1-g and 40 for centrifuge tests. The excess pore pressure, surface settlement, and acceleration in the soil were measured at the same locations in the 1-g and centrifuge tests. The total excess pore pressure from development to dissipation was measured. In the centrifuge test, viscous fluid was used as the pore water to eliminate the time scaling difference between dynamic time and dissipation time. In the 1-g tests, the steady state concept was applied to determine the unit weight of the model soil, and two different time scaling factors were applied for the dynamic time and the dissipation time. It is concluded that the 1-g tests can simulate the excess pore pressure of the prototype soil if the permeability of the model soil is small enough to prevent dissipation of excess pore pressure during shaking and the dissipation time scaling factor is properly determined.

Electrical Properties as the ratio of ZnO/$Mn_3$$O_4$ of NTC Thermistor with $Mn_3$$O_4$-NiO-CuO-$Co_3$$O_4$-ZnO system for Inrush Current Limited (돌입전류 제한용 $Mn_3$$O_4$-NiO-CuO-$Co_3$$O_4$-ZnO계 NTC 써미스터에서 ZnO/$Mn_3$$O_4$비에 따른 전기적 특성)

  • 윤중락;김지균;권정렬;이현용;이석원
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.472-477
    • /
    • 2000
  • Oxides of the form Mn$_{4}$/O$_{4}$-CuO-Co$_{3}$/O$_{4}$-NiO-ZnO present properties that make them useful as power NTC thermistor for current limited. Electrical properties of Mn$_{3}$/O$_{4}$-CuO-Co$_{3}$/O$_{4}$-CuO-Co$_{3}$/O$_{4}$-NiO-ZnO power NTC thermistor such as I-V characteristics tim constant activation energy and heat dissipation coefficient measured as a function of temperature and composition. In Mn$_{4}$/O$_{4}$-CuO-Co$_{3}$/O$_{4}$-NiO-ZnO system with the 5wt% addition of Co$_{3}$/O$_{4}$ it can be seen that resistivity and B-constant were increased as the ratio of ZnO/Mn$_{3}$/O$_{4}$ was increased. Heat dissipation constant, I-V characteristics and time constant showed similar behaviour compared with those of conventional thermistors. In particular resistance change ratio ($\Delta$R) the important factor for reliability varied within $\pm$5% indicating the compositions of these products could be available for power thermistor.

  • PDF

Energy Dissipation Demand of Braces Using Non-linear Dynamic Analyses of X-Braced Frame (비선형 동적 해석을 통한 X형 가새골조 내 가새 부재의 에너지 소산)

  • Lee, Kangmin
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.379-388
    • /
    • 2003
  • The response of single story buildings and other case studies were investigated to observe trends and develop a better understanding of the impact of some design parameters on the seismic response of Concentrically Braced Frames (CBF). While many parameters are known to influence the behavior of braced frames, the focus of this study was mostly on quantifying energy dissipation in compression and its effectiveness on seismic performance. Based on dynamic analyses of single story braced frame and case studies, a bracing member designed with bigger R and larger KL/r was found to result in lower normalized cumulative energy ratio in both cases.

Heat Dissipation Technology of IGBT Module Package (IGBT 전력반도체 모듈 패키지의 방열 기술)

  • Suh, Il-Woong;Jung, Hoon-Sun;Lee, Young-Ho;Kim, Young-Hun;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.7-17
    • /
    • 2014
  • Power electronics modules are semiconductor components that are widely used in airplanes, trains, automobiles, and energy generation and conversion facilities. In particular, insulated gate bipolar transistors(IGBT) have been widely utilized in high power and fast switching applications for power management including power supplies, uninterruptible power systems, and AC/DC converters. In these days, IGBT are the predominant power semiconductors for high current applications in electrical and hybrid vehicles application. In these application environments, the physical conditions are often severe with strong electric currents, high voltage, high temperature, high humidity, and vibrations. Therefore, IGBT module packages involves a number of challenges for the design engineer in terms of reliability. Thermal and thermal-mechanical management are critical for power electronics modules. The failure mechanisms that limit the number of power cycles are caused by the coefficient of thermal expansion mismatch between the materials used in the IGBT modules. All interfaces in the module could be locations for potential failures. Therefore, a proper thermal design where the temperature does not exceed an allowable limit of the devices has been a key factor in developing IGBT modules. In this paper, we discussed the effects of various package materials on heat dissipation and thermal management, as well as recent technology of the new package materials.

Experimental Verification of Heat Sink for FPGA Thermal Control (FPGA 열제어용 히트싱크 효과의 실험적 검증)

  • Park, Jin-Han;Kim, Hyeon-Soo;Ko, Hyun-Suk;Jin, Bong-Cheol;Seo, Hak-Keum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.789-794
    • /
    • 2014
  • The FPGA is used to the high speed digital satellite communication on the Digital Signal Process Unit of the next generation GEO communication satellite. The high capacity FPGA has the high power dissipation and it is difficult to satisfy the derating requirement of temperature. This matter is the major factor to degrade the equipment life and reliability. The thermal control at the equipment level has been worked through thermal conduction in the space environment. The FPGA of CCGA or BGA package type was mounted on printed circuit board, but the PCB has low efficient to the thermal control. For the FPGA heat dissipation, the heat sink was applied between part lid and housing of equipment and the performance of heat sink was confirmed via thermal vacuum test under the condition of space qualification level. The FPGA of high power dissipation has been difficult to apply for space application, but FPGA with heat sink could be used to space application with the derating temperature margin.

Investigation on the Design Wave Forces for Ear-do Ocean Research Station II: Fluid Force in the Breaking Wave Field (이어도 종합해양과학기지에 대한 설계파력의 검토 II: 쇄파역에서의 유체력)

  • 전인식;심재설;최성진
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.4
    • /
    • pp.168-180
    • /
    • 2000
  • In the Part I, the three dimensional model testing with NNW deep water wave direction gave the results such that the occurrence of breaking waves over the peak of Ear-Do caused very small wave height at the structure position. But the measured wave forces were rather greater than the calculated forces based on deep water wave height. Furthermore, It was also perceived that the time series of the forces looked like corresponding to the case that waves were superimposed by an unidirectional current. In the present Part II, the current is presumed to be a flow secondly induced by breaking waves, and an extensive study to clarify the current in a quantitative sense is performed through numerical analysis and hydraulic experiment. The results showed that a strong circulation can surely occur in the vicinity of the structure due to radiation stress differentials given by the breaking waves. It was also recognized that the velocity of the induced current varied with the magnitude of energy dissipation rate introduced in the numerical analysis. The numerical analysis was tuned adjusting the dissipation rate so that the calculated wave field could closely match with the experimental results of Part I. The fluid force (in prototype) for the optimal match showed approximately 2.2% increased over the calculated value based on the deep water wave height (24.6m) whereas the force corresponding to the average of the experimental values showed the increase of about 13.0%.

  • PDF

Studies of Adsorption on the Anionic Surface of $SiO_2$ by Cationic Modified Starches (전분의 양성화 개질을 통한 음이온성 $SiO_2$ 표면에서의 흡착 특성 연구)

  • Han, DongSung;Kim, YuMi;Kim, HanYoung;Chi, GyeongYup;Cho, InShik;Kim, JongDuk
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.24-30
    • /
    • 2013
  • The adsorption characteristics of cationic starches and starch-oligomers were investigated using the quartz crystal microbalance with dissipation monitoring (QCM-D). The adsorbed amount of modified starches was higher than that of cationic surfactants such as $C_{12{\sim}16}$ trimethylammonium bromide. Cationic starches did not show the tendency depending on the degree of cationic substitution and molecular weight. On the other hand, the softness of the adsorption layer increased with the molecular weight of cationic starches in a viscoelasticity terms. During the adsorption/desorption steps, the amount of adsorbed cationic surfactants was 4~9 times. On the other hand, the difference in the amount of adsorption of all the $C_1$ grafted cationic starches was just 0~50%. In addition, the rigidity of the adsorption layer of cationic surfactant in the desorption step decreased, while, that of cationic starches increased at the same condition.