• 제목/요약/키워드: Dissipation

검색결과 3,445건 처리시간 0.027초

Application of Energy Dissipation Technology in High-Rise Buildings

  • Hu, Da-Zhu;Zhang, Xiao-Xuan;Li, Guo-Qiang;Sun, Fei-Fei;Jin, Hua-Jian
    • 국제초고층학회논문집
    • /
    • 제10권2호
    • /
    • pp.137-147
    • /
    • 2021
  • The principle of energy dissipation technology is to dissipate or absorb the seismic energy input through the deformation or velocity change of dampers installed in the main structure of high-rise buildings, so as to reduce the seismic response of the buildings. With the development of energy dissipation technology, recognized as an effective and new measurement for reducing seismic effects, its application in high-rise buildings has become more and more popular. The appropriate energy dissipation devices suitable for high-rise buildings are introduced in this paper. The effectiveness of energy-dissipation technology for reducing the seismic response of high-rise buildings with various structural forms is demonstrated with a number of actual examples of high-rise buildings equipped with various energy dissipation devices.

충격하중시험을 이용한 액상화 후 과잉간극수압 소산속도의 상사비 연구 (Evaluation of Similitude Laws for Dissipation Velocity of Excess Pore Pressure after Liquefaction using Impulse Load Tests)

  • 김동휘;하익수;황재익;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.714-721
    • /
    • 2004
  • The purpose of this study is to find out the similitude laws for dissipation velocity of excess pore pressure after liquefaction according to magnitude of input accelerations and height of model soils from the results of impulse load tests. In impulse load tests, model soils were constructed to the height of 25cm, 50cm, and 100cm in acrylic tubes whose inside diameters were 19cm and 38cm respectively, and impulse loads were applied at the bottom of each model soil to liquefy the entire model soil. Excess pore pressure distribution by depth and settlement of soil surface were measured in each test. Dissipation curves of excess pore pressure measured in each tests were simulated by solidification theory, and dissipation velocities of excess pore pressure were determined from the slope of simulated dissipation curves. From the results of impulse load tests, dissipation velocity of excess pore pressure was not affected by magnitude of input acceleration, and from this fact, dissipation process was proved to be different from dynamic phenomenon. However, dissipation velocity of excess pore pressure increased as height of model soil increased and showed little difference as diameter of model soil increased. Therefore, the similitude law for dissipation velocity could be expressed by the similitude law for model height to 0.2 without regard to the diameter of model soil.

  • PDF

Experimental study on energy dissipation and damage of fabricated partially encased composite beams

  • Wu, Kai;Liu, Xiaoyi;Lin, Shiqi;Tan, Chengwei;Lu, Huiyu
    • Computers and Concrete
    • /
    • 제30권5호
    • /
    • pp.311-321
    • /
    • 2022
  • The interfacial bond strength of partially encased composite (PEC) structure tends to 0, therefore, the cast-in-place concrete theoretically cannot embody better composite effect than the fabricated structure. A total of 12 specimens were designed and experimented to investigate the energy dissipation and damage of fabricated PEC beam through unidirectional cyclic loading test. Because the concrete on both sides of the web was relatively independent, some specimens showed obvious asymmetric concrete damage, which led to specimens bearing torsion effect at the later stage of loading. Based on the concept of the ideal elastoplastic model of uniaxial tensile steel and the principle of equivalent energy dissipation, the energy dissipation ductility coefficient is proposed, which can simultaneously reflect the deformability and bearing capacity. In view of the whole deformation of the beam, the calculation formula of energy dissipation is put forward, and the energy dissipation and its proportion of shear-bending region and pure bending region are calculated respectively. The energy dissipation efficiency of the pure bending region is significantly higher than that of the shear-bending region. The setting of the screw arbors is conducive to improving the energy dissipation capacity of the specimens. Under the condition of setting the screw arbors and meeting the reasonable shear span ratio, reducing the concrete pouring thickness can lighten the deadweight of the component and improve the comprehensive benefit, and will not have an adverse impact on the energy dissipation capacity of the beam. A damage model is proposed to quantify the damage changes of PEC beams under cyclic load, which can accurately reflect the load damage and deformation damage.

반도체 및 전자패키지의 방열기술 동향 (Heat Dissipation Trends in Semiconductors and Electronic Packaging)

  • 문석환;최광성;엄용성;윤호경;주지호;최광문;신정호
    • 전자통신동향분석
    • /
    • 제38권6호
    • /
    • pp.41-51
    • /
    • 2023
  • Heat dissipation technology for semiconductors and electronic packaging has a substantial impact on performance and lifespan, but efficient heat dissipation is currently facing limited improvement. Owing to the high integration density in electronic packaging, heat dissipation components must become thinner and increase their performance. Therefore, heat dissipation materials are being devised considering conductive heat transfer, carbon-based directional thermal conductivity improvements, functional heat dissipation composite materials with added fillers, and liquid-metal thermal interface materials. Additionally, in heat dissipation structure design, 3D printing-based complex heat dissipation fins, packages that expand the heat dissipation area, chip embedded structures that minimize contact thermal resistance, differential scanning calorimetry structures, and through-silicon-via technologies and their replacement technologies are being actively developed. Regarding dry cooling using single-phase and phase-change heat transfer, technologies for improving the vapor chamber performance and structural diversification are being investigated along with the miniaturization of heat pipes and high-performance capillary wicks. Meanwhile, in wet cooling with high heat flux, technologies for designing and manufacturing miniaturized flow paths, heat dissipating materials within flow paths, increasing heat dissipation area, and reducing pressure drops are being developed. We also analyze the development of direct cooling and immersion cooling technologies, which are gradually expanding to achieve near-junction cooling.

도시형 자기부상열차 전력 측정 (Measuring Power Dissipation for Urban Maglev Vehicle)

  • 박정웅;김봉섭;이장열;김행구
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.3092-3098
    • /
    • 2011
  • This paper deals with analysis of measuring power dissipation when Maglev is running. With the various running scenarios for Maglev, power dissipation was measured and a comparative analysis of it and wheel-on rails were carried out. The purpose of this paper is to confirm the efficiency and economics on operation of Maglev and reflect detail design later. When the running scenarios of Maglev are the status of landing on and levitation, running at rated acceleration and deceleration and according to changes of velocity, the power dissipation was measured. The measured results are analyzed considering with apparent electric power and active power, reactive power and power factor etc. Due to the limited test track condition, it is very limited to compare and analyze Maglev and general trains. Nevertheless, It is a task of great significance to identify the efficiency and economics on operating Maglev through the results of measuring power dissipation. In the future, measuring power dissipation through more various scenarios will be carried out, and the results will be reflected the design.

  • PDF

Design principles for stiffness-tandem energy dissipation coupling beam

  • Sun, Baitao;Wang, Mingzhen;Gao, Lin
    • Smart Structures and Systems
    • /
    • 제20권1호
    • /
    • pp.53-60
    • /
    • 2017
  • Reinforced concrete shear wall is one of the most common structural forms for high-rise buildings, and seismic energy dissipation techniques, which are effective means to control structural vibration response, are being increasingly used in engineering. Reinforced concrete-mild steel damper stiffness-tandem energy dissipation coupling beams are a new technology being gradually adopted by more construction projects since being proposed. Research on this technology is somewhat deficient, and this paper investigates design principles and methods for two types of mild steel dampers commonly used for energy dissipation coupling beams. Based on the conception design of R.C. shear wall structure and mechanics principle, the basic design theories and analytic expressions for the related optimization parameters of dampers at elastic stage, yield stage, and limit state are derived. The outcomes provide technical support and reference for application and promotion of reinforced concrete-mild steel damper stiffness-tandem energy dissipation coupling beam in engineering practice.

Large eddy simulation using a curvilinear coordinate system for the flow around a square cylinder

  • Ono, Yoshiyuki;Tamura, Tetsuro
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.369-378
    • /
    • 2002
  • The application of Large Eddy Simulation (LES) in a curvilinear coordinate system to the flow around a square cylinder is presented. In order to obtain sufficient resolution near the side of the cylinder, we use an O-type grid. Even with a curvilinear coordinate system, it is difficult to avoid the numerical oscillation arising in high-Reynolds-number flows past a bluff body, without using an extremely fine grid used. An upwind scheme has the effect of removing the numerical oscillations, but, it is accompanied by numerical dissipation that is a kind of an additional sub-grid scale effect. Firstly, we investigate the effect of numerical dissipation on the computational results in a case where turbulent dissipation is removed in order to clarify the differences between the effect of numerical dissipation. Next, the applicability and the limitations of the present method, which combine the dynamic SGS model with acceptable numerical dissipation, are discussed.

손실계수 표준기 제작 및 그 특성 (Development and Its Characteristics of a Dissipation Factor Standard)

  • 김한준;강전홍;한상옥
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.527-528
    • /
    • 2006
  • A dissipation factor standard of decade type having the range of 1 to 0.0001 at the frequency of 1 kHz and 10 kHz was fabricated using "T" networks combined R and C components. The values of the fabricated dissipation factor standard were adjusted within 1% of the nominal values at 0.0001 dial range and 0.05% at the others. This dissipation factor standard is used as a working standard for calibration of a impedance measurement meter at KRISS and as a primary standard of dissipation factor field at NML-SIRIM in Malaysia.

  • PDF

Investigation of the effect of damper location and slip load calculation on the behavior of a RC structure

  • Mehmet Sevik;Taha Yasin Altiok;Ali Demir
    • Earthquakes and Structures
    • /
    • 제24권5호
    • /
    • pp.365-375
    • /
    • 2023
  • Energy dissipation systems increase the energy dissipation capacity of buildings considerably. In this study, the effect of dampers on a typical 10-storey reinforced concrete structure with a ductile moment-resisting frame was investigated. In this context, 5 different models were created according to the calculation of the slip load and the positions of the dampers in the structure. Nonlinear time-history analyzes using 11 different earthquake acceleration records were performed on the models using the ETABS program. As a result of the analyses, storey displacements, energy dissipation ratios, drift ratios, storey accelerations, storey shears, and hysteretic curves of the dampers on the first and last storey and overturning moments are presented. In the study, it was determined that friction dampers increased the energy dissipation capacities of all models. In addition, it has been determined that positioning the dampers in the outer region of the structures and taking the base shear as a basis in the slip load calculation will be more effective.

Nonexistence and non-decoupling of the dissipative potential for geo-materials

  • Liu, Yuanxue;Zhang, Yu;Wu, Runze;Zhou, Jiawu;Zheng, Yingren
    • Geomechanics and Engineering
    • /
    • 제9권4호
    • /
    • pp.531-545
    • /
    • 2015
  • Two fundamental issues exist in the damage theory of geo-material based on the concept of thermodynamics: existence or nonexistence of the dissipation potential, and whether the dissipation potential could be decoupled into a damage potential and a plastic one or not. Thermodynamics theory of elastoplastic damage assumes the existence of dissipation potential, but the presence of dissipation potential is conditional. Based on the dissipation inequality in accord with the second law of thermodynamics, the sufficient and necessary conditions are given for the existence of the dissipation potential separately in total and incremental forms firstly, and proved strictly in theory. With taking advantage of the basic mechanical properties of geo-materials, the nonexistence of the dissipative potential is verified. The sufficient and necessary conditions are also given and proved for the decoupling of the dissipation potential of geo-materials in total and incremental forms. Similarly, the non-decoupling of the dissipation potential has also been proved, which indicates the dissipation potential of geo-materials in total or incremental forms could not be decoupled into a dissipative potential for plasticity and that for damage respectively. The research results for the fundamental issues in the thermodynamics theory of damage will help establish and improve the theoretic basis of elastoplastic damage constitutive model for geo-materials.