• 제목/요약/키워드: Dissipated Energy

검색결과 313건 처리시간 0.023초

Rompe-Weisel Model에 의한 대전 인체의 정전기 방전 에너지 평가 (Electrostatic Discharge Energy Estimation of the Charged Human Body by the Rompe-Weisel Model)

  • 이종호;김두현;강동규
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.54-59
    • /
    • 2003
  • The discharge energy by electrostatic discharge of the charged human body is calculated under the assumption that the stored charge is dissipated completely. However, it is well-known that the charge is slightly remained after electrostatic discharge. Therefore, The Rompe-Weisel model of the discharge analysis, which has somewhat more of a physical justification than the conventional energy equation, is proposed. It is proposed that the electrical conductivity of the arc should be proportional to the energy density transferred to it by Ohmic dissipation. For the electrostatic discharge energy analysis, the Rompe-Weisel model was compared by quasi static analysis. As a consequence, a study on a reliable energy evaluation based on simulation models during electrostatic discharge is carried out in this paper and is adopted to estimate the explosion hazards of flammable gases.

Seismic energy dissipation in torsionally responding building systems

  • Correnza, J.C.;Hutchinson, G.L.;Chandler, A.M.
    • Structural Engineering and Mechanics
    • /
    • 제3권3호
    • /
    • pp.255-272
    • /
    • 1995
  • The paper considers aspects of the energy dissipation response of selected realistic forms of torsionally balanced and torsionally unbalanced building systems, responding to an ensemble of strong-motion earthquake records. Focus is placed on the proportion of the input seismic energy which is dissipated hysteretically, and the distribution of this energy amongst the various lateral load-resisting structural elements. Systems considered comprise those in which torsional effects are discounted in the design, and systems designed for torsion by typical code-defined procedures as incorporated in the New Zealand seismic standard. It is concluded that torsional response has a fundamentally significant influence on the energy dissipation demand of the critical edge elements, and that therefore the allocation of appropriate levels of yielding strength to these elements is a paramount design consideration. Finally, it is suggested that energy-based response parameters be developed in order to assist evaluations of the effectiveness of code torsional provisions in controlling damage to key structural elements in severe earthquakes.

AIR ENTRAINMENT AND ENERGY DISSIPATION AT STEPPED DROP STRUCTURE

  • Kim Jin Hong
    • Water Engineering Research
    • /
    • 제5권4호
    • /
    • pp.195-206
    • /
    • 2004
  • This paper deals with oxygen transfer by air entrainment and energy dissipations by flow characteristics at the stepped drop structure. Nappe flow occurred at low flow rates and for relatively large step height. Dominant flow features included an air pocket, a free-falling nappe impact and a subsequent hydraulic jump on the downstream step. Most energy was dissipated by nappe impact and in the downstream hydraulic jump. Skimming flow occurred at larger flow rates with formation of recirculating vortices between the main flow and the step comers. Oxygen transfer was found to be proportional to the flow velocity, the flow discharge, and the Froude number. It was more related to the flow discharge than to the Froude number. Energy dissipations in both cases of nappe flow and skimming flow were proportional to the step height and were inversely proportional to the overflow depth, and were not proportional to the step slope. The stepped drop structure was found to be efficient for water treatment associated with substantial air entrainment and for energy dissipation.

  • PDF

Low Cycle Fatigue Life Assessment of Alloy 617 Weldments at 900℃ by Coffin-Manson and Strain Energy Density-Based Models

  • Rando, Tungga Dewa;Kim, Seon-Jin
    • 동력기계공학회지
    • /
    • 제21권1호
    • /
    • pp.43-49
    • /
    • 2017
  • This work aims to investigate on the low cycle fatigue life assessment, which is adopted on the strain-life relationship, or better known as the Coffin-Manson relationship, and also the strain energy density-based model. The low cycle fatigue test results of Alloy 617 weldments under $900^{\circ}C$ have been statistically estimated through the Coffin-Manson relationship according to the provided strain profile. In addition, the strain energy density-based model is proposed to represent the energy dissipated per cycle as fatigue damage parameter. Based on the results, Alloy 617 weldments followed the Coffin-Manson relationship and strain energy density-based model well, and they were compatible with the experimental data. The predicted lives based on these two proposed models were examined with the experimental data to select a proper life prediction parameter.

LED 모듈 표준 표시사항의 경제적인 평가를 위한 단일 핀 방열 블록의 냉각성능 예측 (Predicted Cooling Performance of Single Finned Heat Dissipating Block for Economic Assessment of LED Module Markings in Standards)

  • 허영준;송명호
    • 한국태양에너지학회 논문집
    • /
    • 제35권3호
    • /
    • pp.81-91
    • /
    • 2015
  • LED has received intensive research attention due to its long life, high efficacy, fast response and wide colour availability, and has secured extensive application areas. However, LED chips within the modules convert only fraction of electric energy into light, and majority of supplied energy needs to be dissipated as heat, which challenges in the performance and life of the LED modules. IEC 62717 specifies the performance requirements for LED modules together with the test methods and conditions. The present study examined the influence of different design parameters on performance temperature through series of experiments and numerical simulations. The economic means to change the module performance temperature during the measurement of mandatory markings were suggested based on predicted cooling performances.

수동소자에 의한 축적에너지 2중 궤환방식 전류형 GTO 인버터의 입.출력 특성 (Currant Source GTO Inverter with Double Recovery Path of Commutation Energy by LCD)

  • 김진표;최상원;이종하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 F
    • /
    • pp.2104-2106
    • /
    • 1997
  • In order to develop the three phase GTO CSI with double recovery path of commutation energy by passive devices (LCD), we studied the clamping circuit to protect switching device and energy recovery circuit to recover absorbed energy of capacitor and DC inductor. In this paper, we investigated how DC input power is increased or decreased according to energy recovery path with or not in the three phase GTO current source inverter, we used a induction motor as inverter load, and controlled a induction motor with v/f constant control. Experimental results show that dissipated DC power is decreased in $9{\sim}14%$ by double recovery path. We also confirmed that the characteristics is met as compare simulation results with experimental results according to each frequency.

  • PDF

Development of Wear Model concerning the Depth Behaviour

  • 김형규;이영호
    • KSTLE International Journal
    • /
    • 제6권1호
    • /
    • pp.1-7
    • /
    • 2005
  • Wear model for predicting the vehaviour of a depth is considered in this paper. It is deduced from the energy and volume based wear models such as the Archard equation and the workrate model. A new parameter of the equivalent depth ($D_e$= wear volume /worn area) is considered for the wear model of a depth prediction. A concenpt of a dissipated shear energy density is accommodated for in the suggested models. It is found that $D_e$ can distinguish the worn area shape. A cubic of $D_e$($D_e^3$) gives a better linear regression with the volume than that of the maximmum depth $D_{max}e$($D_{max}^3$) does. Both $D_{max}$ and $D_e$ are used for the presently suggested depth-based wear model. As a result, a wear depth profile can be simulated by a model using $D_{max}$. Wear resistance from the concern of an overall depth can be identified by the wear coefficient of the model using $D_e$.

Progressive collapse analysis of steel frame structure based on the energy principle

  • Chen, Chang Hong;Zhu, Yan Fei;Yao, Yao;Huang, Ying
    • Steel and Composite Structures
    • /
    • 제21권3호
    • /
    • pp.553-571
    • /
    • 2016
  • The progressive collapse potential of steel moment framed structures due to abrupt removal of a column is investigated based on the energy principle. Based on the changes of component's internal energy, this paper analyzes structural member's sensitivity to abrupt removal of a column to determine a sub-structure resisting progressive collapse. An energy-based structural damage index is defined to judge whether progressive collapse occurs in a structure. Then, a simplified beam damage model is proposed to analyze the energies absorbed and dissipated by structural beams at large deflections, and a simplified modified plastic hinges model is developed to consider catenary action in beams. In addition, the correlation between bending moment and axial force in a beam during the whole deformation development process is analyzed and modified, which shows good agreement with the experimental results.

전류(轉流)에너지 2중 궤환방식 새로운 전류형 GTO 인버터의 특성 (The Characteristics of New Current Source GTO Inverter with Double Recovery Path of Commutation Energy)

  • 최상원;김진표;이종하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.435-437
    • /
    • 1997
  • In order to develop the three phase GTO CSI with double recovery path of commutation energy by passive devices (LCD), we studied the clamping circuit to protect switching device and energy recovery circuit to recover absorbed energy of capacitor and DC link inductor. In this paper, we investigated how DC input power is increased or decreased according to energy recovery path with or not in the three phase GTO current source inverter. We used a induction motor as the load of inverter, and controlled a induction motor with V/F constant control. Experimental results show that dissipated DC power is decreased and capacitor voltage Vc is effectively suppressed by double recovery path.

  • PDF

벽식점성감쇠기의 감쇠 성능에 관한 기초적인 연구 (Experimental Study on Energy Dissipation Capacities of the Viscous Damping Wall)

  • 이장석;김남식;조강표
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.246-251
    • /
    • 2003
  • This paper presents an experimental study on the energy dissipation characteristics of viscous damping wall (VDW). VDW is consisted of a plate floating in a thin case made of steel plated filled with highly viscous silicone oil. Because VDW demonstrates both viscous damping and stiffness characteristics, the viscous resisting force can be expressed as the sum of velocity dependant viscous damping force and displacement dependant restoring force. The viscous resisting force and energy absorbing capacity can be easily adjusted by changing three factors, i.e. viscosity of the fluid, gap distance and area of the wall plates. VDW was tested using a series of harmonic (sinusoidal) displacement history having different frequency and amplitude and the force-displacement relationship was recorded. The relationship between dissipated energy with three factors and the influence of exciting frequency on resisting force were Investigated

  • PDF