• Title/Summary/Keyword: Dissimilar metal

Search Result 263, Processing Time 0.024 seconds

An Evaluation of Fatigue Properties on Dissimilar Friction Weld of Heat-Resisting Steels Used in Vehicle Valves (차량 밸브용 내열강재 이종 마찰용접부의 피로특성 평가)

  • 이동길;이상열;정재강
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.186-192
    • /
    • 2002
  • The fatigue crack propagation characteristics were investigated on dissimilar friction weld of two kind of heat-resisting steels (STR3 and STR35) commonly used in valve materials for vehicles. A small circular artificial defect was machined to induce fatigue crack at bonded line, heat affected zone and base metal of the weld on the surface of the specimens. From the results of the experiment, the fatigue limits of the materials STR3 and STR35 were obtained to be 429.0MPa and 409.4MPa respectably. The STR35 base metal and 1.0mm HAZ specimens showed 190% and 82% higher fatigue life than STR3 base metal. And the fatigue life of 1.0mm HAZ specimen was shown 99% on STR3 and 29% on STR35 higher than that of their base metal. But the fatigue life of weld interface specimen was shown 18% on STR3 and 72% on STR35 lower than that of their base metal because of the weld interface separation.

Similar and Dissimilar Welding Properties of Zirconium by TIG Welding (텅스텐아크용접에 의한 Zirconium의 동종 및 이종용접 특성 분석)

  • Kim, Jin Yeong;Hwang, Hyo-Woon;Lee, Dae Hyun;Lee, Jae Gwan;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.4
    • /
    • pp.165-170
    • /
    • 2021
  • Zirconium has excellent mechanical strength and high heat resistance and excellent corrosion resistance, and it is very important to study zirconium's dissimilar welding properties since it can be used in various applications under harsh environments. Similar welding of pure zirconium and dissimilar metal welding of pure zirconium and pure titanium were performed by TIG welding, and the welding properties were studied in association with microstructural and mechanical properties. In the Zr/Zr welded specimen, sound FZ and HAZ regions showed a basketweave microstructure composed of plate α phase. FZ region of Zr/Ti dissimilar welded specimen exhibited a maximum hardness value of 354.8 Hv, which is about three times higher than that of Ti base metal, due to the precipitation of very fine metastable ω and α phases in the beta matrix. In addition, due to the microstructural continuity in the FZ and HAZ regions, excellent elongation property of 21% was exhibited.

Characterization of Mechanical Properties in the Heat Affected Zones of Alloy 82/182 Dissimilar Metal Weld Joint (Alloy 82/182 이종금속 용접부 열영향부의 기계적물성치 특성 파악)

  • Kim, Jin-Weon;Kim, Jong-Sung;Lee, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.73-78
    • /
    • 2008
  • The paper presents the characteristics of mechanical properties within the heat affected zone (HAZ) of dissimilar metal weld between SA508 Gr.1a and F316 stainless steel (SS) with Alloy 82/182 filler metal. Tensile tests were performed using small-size specimens taken from the HAZ regions close to both fusion lines of weld, and the micro-structures were examined using optical microscope (OM) and transmission microscope (TEM). The results showed that significant gradients of the yield stress (YS), ultimate tensile stress (UTS), and elongations were observed within the HAZ of SA508 Gr.1a. This was attributed to the different microstructures within the HAZ. In the HAZ of F316 SS, however, the welding effect dominated the YS and elongation rather than UTS, and TEM micrographs conformed the strengthening in the HAZ of F316 SS was associated with a dislocation-induced strain hardening.

  • PDF

NANO-STRUCTURAL AND NANO-CHEMICAL ANALYSIS OF NI-BASE ALLOY/LOW ALLOY STEEL DISSIMILAR METAL WELD INTERFACES

  • Choi, Kyoung-Joon;Shin, Sang-Hun;Kim, Jong-Jin;Jung, Ju-Ang;Kim, Ji-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.491-500
    • /
    • 2012
  • The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

Characterization of Mechanical Properties in the Heat Affected Zones of Alloy 82/182 Dissimilar Metal Weld Joint (Alloy 82/182 이종금속 용접부 열영향부의 계계적물성치 파악)

  • Kim, Jin-Weon;Kim, Jong-Sung;Lee, Kyoung-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.28-33
    • /
    • 2008
  • This paper presents the characteristics of mechanical properties within the heat affected zones(HAZs) of dissimilar metal weld joint between SA508 Gr.1a and F3l6 stainless steel(SS) with Alloy 82/182 filler metal. Tensile tests were performed using small-size specimens taken from the heat affected regions close to both fusion lines of weld, and the micro-structures were examined using optical microscope(OM) and transmission microscope(TEM). The results showed that significant gradients of the yield stress(YS), ultimate tensile stress(UTS), and elongations were observed within the HAZ of SA508 Gr.1a. This was attributed to the different microstructures within the HAZ developed during the welding process. In the HAZ of F316 SS, however, the welding effect dominated the YS and elongation rather than UTS. TEM micrographs demonstrated these characteristics of the HAZ of F316 SS was associated with a dislocation-induced strain hardening.

Fracture properties and crack tip constraint quantification of 321/690 dissimilar metal girth welded joints by using miniature SENB specimens

  • Bao, Chen;Sun, Yongduo;Wu, Yuanjun;Wang, Kaiqing;Wang, Li;He, Guangwei
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1924-1930
    • /
    • 2021
  • By using miniature SENB specimens, the fracture properties of the materials in the region of welded metal, 321 stainless steel heat affected zone, 690 alloy heat affected zone of 321/690 dissimilar metal girth welded joints were tested. Both the J-resistance curves and critical fracture toughness of the three different materials are affected by the crack size because of the effect of crack tip constraint. Groups of constraint corrected J-resistance curves of the three materials are obtained according to J-Q-M approach. The welded metals exhibit the best fracture resistance but the worst fracture resistance is observed in the material of 690 alloy heat affected zone.

A Study of Characteristics on the Dissimilar Metals (Alloy Steel : A387 Gr. 91 - Carbon Steel : A516 Gr. 70) Welds Made with FCA Multiple Layer Welding : Part 1 (합금강(ASTM A387 Gr. 91) - 탄소강(ASTM A516 Gr.70) 이종금속의 FCA 다층 용접부 특성 평가 : Part. 1)

  • Shin, Tae Woo;Jang, Bok Su;Koh, Jin Hyun
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.61-68
    • /
    • 2016
  • Characteristics of dissimilar metal welds between alloy steel ASTM A387 Gr. 91 and carbon steel ASTM A516 Gr.70 made with Flux cored arc welding(FCAW) have been evaluated in terms of microstructure, mechanical strength, chemical analysis by EDS as well as corrosion test. Three heat inputs of 15.0, 22.5, 30.0kJ/cm were employed to make joints of dissimilar metals with E91T1-B9C wire. Post-weld heat treatment was carried out at $750^{\circ}C$ for 2.5 h. Based on microstructural examination, tempered martensite and lower bainite were formed in first layer of weld metal. The amount of tempered martensite was decreased and the amount of lower bainite was increased with increasing heat input and layer. Heat affected zone of alloy steel showed the highest hardness due to the formation of tempered Martensite and lower Bainite. Tensile strengths of dissimilar welds decreased with increasing heat inputs. Dissimilar welds seemed to have a good hot cracking resistance due to the low HCS index below 4. The salt spray test of dissimilar metals showed that the corrosion rate increased with increasing heat inputs due to the increase of the amount of lower Bainite.

A Study on Weldability and Prediction of Nugget Shape in Dissimiar Metal Arc Spot Weld (이종 금속의 아크 스폿 용접성 및 접합부 형상 예측에 관한 연구)

  • Kim, Gi Sun;Jang, Gyeong Bok;Gang, Seong Su
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.184-184
    • /
    • 2000
  • In this study, the lap welding between austenitic stainless steel and carbon steel was carried out using arc spot welding process and weldability of welded specimens was estimated. From the tensile-shear strength test, micro Vickers hardness test, and microstructure observation, specimen of 6.5mm(hole of upper plate) showed the best results in terms of tensile-shear strength and nugget shape. And there was an unmixed zone in fusion boundary between the carbon steel base metal and bulk weld metal. This zone had very thin width with the hard microstructure. The shape of weld nugget in arc spot welding of dissimilar metal welds was predicted by searching thermal history of a weld joint through a three-dimensional finite element model. From the numerical analysis, predicted the shape of weld nugget showed good agreement with the experiment(Received August 24, 1999)

Tensile and impact toughness properties of various regions of dissimilar joints of nuclear grade steels

  • Karthick, K.;Malarvizhi, S.;Balasubramanian, V.;Krishnan, S.A.;Sasikala, G.;Albert, Shaju K.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.116-125
    • /
    • 2018
  • Modified 9Cr-1Mo ferritic steel is a preferred material for steam generators in nuclear power plants for their creep strength and good corrosion resistance. Austenitic stainless steels, such as type 316LN, are used in the high temperature segments such as reactor pressure vessels and primary piping systems. So, the dissimilar joints between these materials are inevitable. In this investigation, dissimilar joints were fabricated by the Shielded Metal Arc Welding (SMAW) process with Inconel 82/182 filler metals. The notch tensile properties and Charpy V-notch impact toughness properties of various regions of dissimilar metal weld joints (DMWJs) were evaluated as per the standards. The microhardness distribution across the DMWJs was recorded. Microstructural features of different regions were characterized by optical and scanning electron microscopy. Inhomogeneous notch tensile properties were observed across the DMWJs. Impact toughness values of various regions of the DMWJs were slightly higher than the prescribed value. Formation of a carbon-enriched hard zone at the interface between the ferritic steel and the buttering material enhanced the notch tensile properties of the heat-affected-zone (HAZ) of P91. The complex microstructure developed at the interfaces of the DMWJs was the reason for inhomogeneous mechanical properties.

Resistance Spot Welding of Dissimilar Materials of Austenitic Stainless Steels and IF (Interstitial Free) Steels (저항 점 용접을 이용한 AISI 316 스테인레스강과 용융아연도금 강판의 이종접합)

  • Lee, Jin-Bum;Nam, Dae-Geun;Kang, Nam-Hyun;Kim, Yang-Do;Oh, Weon-Tae;Park, Yeong-Do
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.369-375
    • /
    • 2009
  • The spot weldability of dissimilar metal joints between stainless steels (AISI316) and interstitial free (IF) steels were investigated. This study was aimed to determine the spot welding parameters for a dissimilar metal joint and to evaluate the dissimilar metal joint's weldability, including its welding nugget shape, tensileshear strength, hardness, and microstructure. The fracture surface was investigated by using a Scanning Electron Microscopy (SEM). The experimental results showed that the shape of nugget was asymmetric, in which the fusion zone of the STS316 sheet was larger due to the higher bulk-resistance. The microstructure of the fusion zone was fully martensite. In order to evaluate the microstructure further, dilution of stainless steels were calculated and imposed onto the Schaeffler diagram. The predicted microstructure from the Schaeffler diagram was martensite. In order to confirm the predicted microstructure, XRD measurements were carried out. The results showed that that initial weld nugget was composed of austenite and martensite.