• Title/Summary/Keyword: Dissimilar Weld

Search Result 229, Processing Time 0.025 seconds

Effect of Structural Geometry and Crack Location on Crack Driving Forces for Cracks in Welds (용접부 균열의 균열진전력에 대한 구조물 형상과 균열 위치의 영향)

  • Oh Chang-Kyun;Kim Jong-Sung;Jin Tae-Eun;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.931-940
    • /
    • 2006
  • Defect assessment of a weld zone is important in fitness-for-service evaluation of plant components. Typically a J and $C^*$ estimation method for a defective homogeneous component is extended to a mismatched component, by incorporating the effect due to the strength mismatch between the weld metal and the base material. The key element is a mismatch limit load. For instance, the R6/R5 procedure employs an equivalent material concept, defined by a mismatch limit load. A premise is that if a proper mismatch limit load solution is available, the same concept can be used for any defect location (either a weld centre defect or a heat affected zone (HAZ) defect) and for any material combination (either two-material or multi-material combinations; either similar or dissimilar joints). However, validation is still limited, and thus a more systematic investigation is needed to generalise the suggestion to any geometry, any defect location and any material combination. This paper describes the effect of structural geometry on the $C^*$ integral for defective similar welds, based on systematic elastic-creep 2-D and 3-D finite element (FE) analyses, to attempt to elucidate the questions given above. It is found that the existing 'equivalent material' concept is valid only for limited cases, although it provides conservative estimates of $C^*$ for most of cases. A modification to the existing equivalent material concept is suggested to improve accuracy.

A Study about Analysis of Weld Distortion using Genetic Algorithm (유전적 알고리듬을 이용한 용접변형 해석에 관한 연구)

  • Kim, Ill-Soo;Kim, Hak-Hyoung;Jang, Han-Kee;Kim, Hee-Jin;Kwak, Sung-Kyu;Ryoo, Hoi-Soo;Shim, Ji-Yeon
    • Journal of Welding and Joining
    • /
    • v.27 no.4
    • /
    • pp.54-59
    • /
    • 2009
  • In the process to manufacture for metallic structures, control of welding deformation is one of an important problems connected with reliability of the manufactured structures so that welding deformation should be measured and controlled with quickly and actively. Also, welding parameters which have as lot of effects on welding deformation such as arc voltage, welding current and welding speed can also be controlled. The objectives for this study were to develop a simple 2-D FEM to calculate not only the transient thermal histories but also the sizes of fusion and heat-affected zone (HAZ) in multi pass arc welds including the butt and fillet weld type with dissimilar thickness, and to concentrate on a developed model for the finding the parameters of Godak's moving heat source model based on a GA. The developed model includes a GA program using MATLB and GA toolbox, and a batch mode thermal model using ANSYS software. Not only the thermal model was verified by comparison with Goldak's work but also the developed model was validated with molten zone section experimental data.

Characteristics of Dissimilar Materials Al alloy(A6005)-Mg alloy(AZ61) Under Friction Stir Welding for Railway Vehicle (철도차량 적용을 위한 Al alloy(A6005)-Mg alloy(AZ61) 이종소재 마찰교반용접 특성 연구)

  • Lee, Woo-Geun;Kim, Jung-Seok;Sun, Seung-Ju;Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.706-713
    • /
    • 2016
  • In this study, the welding characteristics of friction stir welding were investigated in accordance with the tool plunge position and cooling to the base materials for the joining of dissimilar materials (A6005-AZ61). Other different welding conditions, such as the tool rotation speed and welding speed, were fixed to 500rpm-30mm/min, respectively, and welding was then carried out by placing the Mg alloy (AZ61) on the advancing side and Al alloy(A6005) on the retreating side. Welding was conducted under six different conditions. To investigate the welding characteristic, tensile test and microstructure observations using an optical microscope were carried out. As the tensile test result, the maximum strength appeared under the condition in which the tool is moved 1 mm to the Mg alloy direction and cooling to the base materials. Under the same welding conditions, the strength with cooling was approximately two times higher than that without cooling. The tool was located in each direction of 1.7 mm from the weld line. Therefore, in the excessive off-set of tool position, the welding integrity was in an extremely poor condition due to the lack of stirring. This study was confirmed by the A6005-AZ61 dissimilar friction stir welding the welding speed and the tool rotation speed. In addition, the temperature control and tool plunge position are important welding parameters.

Plastic Flow Direction and Strength Evaluation of Dissimilar Fiction Bonding Interface Joints (이종마찰 접합계면부의 소성유동 방향성 및 강도 평가)

  • Oh, Jung-Kuk;Sung, Back-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.43-50
    • /
    • 2002
  • Friction welding has many merits such as energy efficiency, simple processing, etc butt difficult to obtain good weld at the welded interface and heat affected zone. To date, the continuum mechanics and fracture mechanics are utilized to analyse stresses at the interface and propagation of cracks. In this study. STS304 and SM15C are selected because they can be differentiated distinctively from metallic point of view and crack can be observed easily. It is ovserved during friction welding that STS304, rotary part is hatter than SH15C, fixed part. The last fracture occurs around the center because the surface of fatigue fracture has smooth regions, due to the separation phenomenon in plastic flows layers and striation dimple pattern.

Design of Helical SPR for Joining Advanced High Strength Steel and Aluminum Alloy Sheets (초고장력강과 알루미늄 합금의 판재 접합을 위한 헬리컬 SPR 설계)

  • Kim, Dongbum;Kim, Kwan-Woo;Cho, Hae-Yong
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.55-59
    • /
    • 2015
  • Self-piercing riveting (SPR) is a sheet-joining method that can be used for materials that are difficult or unsuitable for weld, such as aluminum alloys and other steel sheet metals. The increased application of lightweight materials has initiated many investigations into new SPR conditions for riveting dissimilar materials. However, buckling of the semi-tubular rivet occurs during the riveting of AHSS. In this study, a helical SPR was designed for the riveting of AHSS and Al-alloy. In addition, the reinforced helical SPR which has straight parts was designed. The riveting of AHSS and Al-alloy was simulated. Simulated results were verified by comparison with experimental ones.

Fatigue Properties of Friction Weld According to the Location of Small Artificial Defect (미소인공결함의 위치에 따른 마찰용접부의 피로특성)

  • 이상열;정재강
    • Journal of Welding and Joining
    • /
    • v.19 no.6
    • /
    • pp.608-613
    • /
    • 2001
  • In this study, the rotary bending fatigue test was carried out with two kinds of base metal, martensite stainless steel STR3 and austenite stainless steel STR35 and the dissimilar friction welded material with them. To compare the fatigue fifes according to the notch positions, the small circular defect was worked on the bonded line, 1.0mm and 0.5mm distance form the bonded line. The fatigue limits of the STR3 and STR35 base metal were 429.0MPa and 409.4MPa respectably. In comparison with fatigue life at the same notch positions, the STR35 specimens showed about 190% for base metal, 82% for 1.0mm distance notched specimens higher than that of the STR3. But the fatigue life of the 0.5mm distance notched STR35 specimen showed about 35% lower than that of the STR3 specimen. And the bonded line notched specimen was much lower fatigue life than the other specimens because of separation of the bonded line.

  • PDF

Simulation of Ultrasonic Beam Focusing on a Defect in Anisotropic, Inhomogeneous Media

  • Jeong, Hyun-Jo;Cho, Sung-Jong;Erdenetuya, Sharaa;Jung, Duck-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.6
    • /
    • pp.635-641
    • /
    • 2011
  • In ultrasonic testing of dissimilar metal welds, application of phased array technique in terms of incident beam focusing is not easy because of complicated material structures formed during the multi-pass welding process. Time reversal(TR) techniques can overcome some limitations of phased array since they are self-focusing that does not depend on the geometrical and physical properties of testing components. In this paper, we test the possibility of TR focusing on a defect within anisotropic, heterogeneous austenitic welds. A commercial simulation software is employed for TR focusing and imaging of a side-drilled hole. The performance of time reversed adaptive focal law is compared with those of calculated focal laws for both anisotropic and isotropic welds.

Friction Welding Optimization of Hot Die Punch Materials and Its AE Evaluation (열간 금형재의 마찰용접 최적화와 AE평가)

  • Oh, S.K.;Kong, Y.S.;Park, I.D.;Yoo, I.J.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.54-58
    • /
    • 2000
  • The complete joining method for dissimilar hot die punch materials and its real-time evaluation method are not available at present. Brazing method has been used for joining them, but it is known that the welded joint by the brazing has the lower bonding efficiency and reliability than the diffusion welding. The friction welding with a diffusion mechanism in bonding was applied in this study. So, this work was carried out to determine the optimal friction welding conditions and to analyze mechanical properties of friction welded joints of hot die punch materials (STD61 for the blade part of hot die punch) to alloy steel (SCM440 for the shank part of hot die punch) such as plunger. In addition, acoustic emission test was carried out during friction welding to evaluate the weld quality.

  • PDF

The Evaluation of Joints Characteristics of Friction Stir Welded Al Alloys for Automobiles (마찰교반접합(FSW)에 의한 자동차용 Al합금의 접합부 특성 평가)

  • Kim, Heung-Ju;Jo, Hyeon-Jin;Jang, Ung-Seong;Bang, Han-Seo
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.171-173
    • /
    • 2005
  • To evaluate the applicability of dissimilar metal friction stir welding in automobile manufacturing process, friction stir welding trials were carried out for typical 5000 and 6000 series aluminum alloy sheets with 2mm thickness. The sound joints of A15052 and A16061-T6 alloys were successfully formed under a wide range of welding condition. Excellent weld ability has been obtained at a condition of rotating speed 2000rpm and travel speed 100mm/min, while a radiographic test also confirmed defect free joint for this condition. Through the Erichsen cup test, the plastic formability of the FSWelded joints was found to be about 83% of base metal.

  • PDF

A Study on Fatigue Characteristics of Dissimilar Spring Steel(SUP9A)-SM25C by Friction Welding (스프링강(SUP9A)-SM25C의 이종재 마찰용접 피로특성에 관한 연구)

  • 정석주;이기중
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.19-25
    • /
    • 2001
  • The friction-welding SM25C is a substitute for the suing steel that is utilized in the machinery, airplane, and automobile, ok. This substitution would provide reduction of material and weight of welding parts. From the result we found that the strength of the friction welded joint was 529-617MPa and the toughness 1.2 times higher than that of the base metal. The optimal condition of friction welding was found as follows : n=2000rpm, $P_1$=68㎫, $P_2$=137MPa, $t_2$=2sec, $t_1$=2-4sec, Considering the strength, the hardness, and the reduction of area in the friction welding, the fiction welding using SUP9A and SM25C was found to cause no problem in on-the-job application.

  • PDF