• Title/Summary/Keyword: Dissimilar Steel

Search Result 212, Processing Time 0.019 seconds

Experimental and numerical investigation on flexural response of reinforced rubberized concrete beams using waste tire rubber

  • Memduh Karalar;Hakan Ozturk;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.43-57
    • /
    • 2023
  • The impacts of waste tire rubber (WTR) on the bending conduct of reinforced concrete beams (RCBs) are investigated in visualization of experimental tests and 3D finite element model (FEM) using both ANSYS and SAP2000. Several WTR rates are used in total 4 various full scale RCBs to observe the impact of WTR rate on the rupture and bending conduct of RCBs. For this purpose, the volumetric ratios (Vf) of WTR were chosen to change to 0%, 2.5%, 5% and 7.5% in the whole concrete. In relation to experimental test consequences, bending and rupture behaviors of the RCBs are observed. The best performance among the beams was observed in the beams with 2.5% WTR. Furthermore, as stated by test consequences, it is noticed that while WTR rate in the RCBs is improved, max. bending in the RCBs rises. For test consequences, it is clearly recognized as WTR rate in the RCB mixture is improved from 0% to 2.5%, deformation value in the RCB remarkably rises from 3.89 cm to 7.69 cm. This consequence is markedly recognized that WTR rates have a favorable result on deformation values in the RCBs. Furthermore, experimental tests are compared to 3D FEM consequences via using ANSYS software. In the ANSYS, special element types are formed and nonlinear multilinear misses plasticity material model and bilinear misses plasticity material model are chosen for concrete and compression and tension elements. As a consequence, it is noticed that each WTR rates in the RCBs mixture have dissimilar bending and rupture impacts on the RCBs. Then, to observe the impacts of WTR rate on the constructions under near-fault ground motions, a reinforced-concrete building was modelled via using SAP2000 software using 3-D model of the construction to complete nonlinear static analysis. Beam, column, steel haunch elements are modeled as nonlinear frame elements. Consequently, the seismic impacts of WTR rate on the lateral motions of each floor are obviously investigated particularly. Considering reduction in weight of structure and capacity of the members with using waste tire rubber, 2.5% of WTR resulted in the best performance while the construction is subjected to near fault earthquakes. Moreover, it is noticeably recognized that WTR rate has opposing influences on the seismic displacement behavior of the RC constructions.

An Experimental Study on Friction Welding and Heat Treatment of Engine Exhaust Valve Steels ( SCr4-21-4 N , SUH3-21-4-N (기관배기 밸브용 강 ( SCr4-21-4N , SUH3-21-4N ) 의 마찰압접과 열처리에 관한 실험적 연구)

  • 오세규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.2
    • /
    • pp.79-87
    • /
    • 1978
  • This is an experimental study on friction welding and heat treatment of engine exhaust valve materials whose welding combination is SCr4 as stem to 21-4N as head and SUH3 to 21-4N. In this study, not only the experiments of friction welding under the selected optimum welding condition and the examination of the mechanical properties were carried out, but also the heat treatment of friction welded specimens under the two selected conditions was taken to obtain the better welding character, eliminating the latent stress and the hardness peak which appeared at the welded zones of heat resisting steel(21-4N, SUH3) and low alloyed steel ($SCr_4$) friction weldments. The results obtained by the experiments and consideration in this study are as follows: I) It was experimentally proved quite reasonable that 'speed=3,OOO rpm, heating pressure Pl=8 kg/ mm2, upsetting pressure p, = 20 kg/mm', heating time $t_1$ = 3 see, upsetting time TEX>$t_2$ = 2.5 sec' was selected as the optimum welding condition for friction-welding the engine exhaust valve materials $SCr_4$ to 21-4 Nand SUH 3 to 21-4 N. 2) The results of the previous study and this one on friction welding of such dissimilar materials as SUH 3-SUH 31, SCr 4-SUH 31, SCr 4-SUH 3, SUH 3-CRK 22, SCr4-21-4 Nand SUH3-21-4 N agreed with each other substantially in the friction welding characteristics at welded interface zones. 3) It was also certified quite satisfactory that '600\ulcornerCX30 min. Xroom air cooling' as an optimum heat treatment condition of the friction welded materials SCr 4-21-4 Nand SUH 3-21-4 N was experimentally determined to eliminate the latent stress and the hardness peak at welded zones. 4) About 20% of the tensile strength before heat treatment of friction welded specimens was decreased after heat treatment 600\ulcornerCX30 min. Xair cooling, but the location of fracture was moved from heat affected zone to parent $SCr_4$ & SUH3. 5) Microscopic examination of the weld joints friction-welded and heat-treated under the above mentioned conditions revealed that the weld zone is very narrow and has a fine grained intermixed structure without any welding defects. 6) The above mentioned conditions can be also utilized as friction welding parameters of the other dissimiar materials for engine valve production.

  • PDF