• Title/Summary/Keyword: Displacements

Search Result 2,673, Processing Time 0.03 seconds

Seismic Performance Evaluation of Multi-Story Piping Systems using Triple Friction Pendulum Bearing (지진격리장치를 적용한 복층구조파이핑 시스템의 내진성능평가)

  • Ryu, Yonghee;Ju, Buseog;Son, Hoyoung
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.450-457
    • /
    • 2018
  • Purpose: The evaluation of seismic performance of critical structures has been emerging a key issue in Korea, since a magnitude 5.8 earthquake, the worst in Koran history, struck Gyeongju, southern area in Korea on september 12th, 2016. In particular, the catastrophic failure of nonstructural components such as sprinkler piping systems can cause significant economic loss or loss of life during and after an earthquake. The nonstructural components can be more fragile than structural components in seismic behavior. Method: This study presents the seismic performance evaluation of fire protection piping system, using coupled building-piping system installed with Triple Friction Pendulum Bearings (TPBs). Kobe (Japan), Kocaeli (Turkey), and GyeongJu (Korea) were selected to consider the uncertainty of ground motions in this study. Result: In the simulation results, it was observed that the reduction of maximum displacements of the piping system with the TPBs' system was significant: Kobe, Kocaeli, and Gyeongju cases were 49%, 14.4% and 21.5%, respectively. Conclusion: Therefore, using seismically isolated system in a building-piping system can be more effective to reduce the seismic risk than a normally installed building-piping systems without TPBs in strong earthquakes.

Comparison of Two Methods for Analyzing Stress-Strain Behavior of Soil Beam (지반보의 응력-변형률 거동에 대한 해석법 비교)

  • Lee, Seung-Hyun;Han, Jin-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.294-302
    • /
    • 2018
  • To analyze the behavior of a soil beam under pore water pressure, the results of analytical solutions and finite element analysis (FEM) were compared quantitatively. In contrast to the results of the analytical solution, the horizontal stress obtained from the FEM did not show a symmetrical distribution. On the other hand, the horizontal stress became closer to symmetrical distribution as the number of elements of the soil beam were increased. A comparison of the horizontal stresses from the analytic solution with those obtained from Gaussian points of FEM showed that the magnitude of the tensile stress from the FEM using 3 elements was 6% of the maximum value of the analytical solution and the compressive stress from the FEM using the same elements was 37% of the maximum value of the analytical solution. The magnitude of the tensile stress from the FEM using 6 elements was 61% of the maximum value of the analytical solution and the magnitude of the compressive stress from the FEM using the elements was 83% of the maximum value of the analytical solution. Vertical stresses, which were obtained from the analytical solution, showed a continuous distribution with the depth of the soil beam, whereas the vertical stresses from the FEM showed a discrete distribution corresponding to each element. The results also showed that the average value of the vertical stresses of each element was close to that of the pore water pressure. A comparison of the vertical displacements computed at the near vertical center line of the soil beam from the FEM with those of the analytical solution showed that the magnitude of the vertical displacement from FEM using 3 elements was 35% of the value of the analytical solution and the magnitude of the vertical displacement from FEM using 6 elements was 57% of the value of the analytical solution.

Tsunami Disasters and Tectonic Movements along the Coastal Areas of Northeast Japan Derived from Mega-Earthquake in March, 2011 (2011년 3월 일본 동북지방 태평양 연안 지진재해시의 쓰나미 재해와 지각변동)

  • CHOI, Seong Gil;MATSUMOTO, Hide-aki;HIRANO, Shinichi;PARK, Ji-hoon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.143-151
    • /
    • 2012
  • The tsunami disasters and tectonic movements derived from mega-earthquake(M 9.0) which occured in the sea floor of the Pacific side of northeast Japan in March, 2011 were investigated. Landward invasion limit of the tsunami was 4.0km from the present coastline in Sendai coastal plain. It was observed that sandy deposit was dristributed largely in coastward part and muddy deposit was distributed largely in landward part. The ratios of distribution distances of the above two deposits were, respectively, 60~75% and 25~40% of the whole invasion distance of the 2011 tsunami. The ratios of the above distribution distances of tsunami deposits could be used to estimate landward invasion distances of the past maga-tsunamies(e.g. '2,000year B.P. Mega-Tsunami' and 'Jogan Tsunami' etc.) in Sendai coastal plain. The mega-scale tsunami disasters were caused by the low and flat geomorphic condition in the Sendai coastal plain and the increasing effect of tsunami height affected by narrow inlet condition of the so-called Ria's coast in the Sanriku coastal area respectively. Tectonic subsidences caused by the mega-earthquake in march, 2011 were observed in many areas of Ishinomaki, Ogawa, Ogachi and Onagawa coasts in northeast Japan. The displacements of tectonic subsidence were between 0.5 meters and 1.0 meters.

Effectiveness Evaluation of Displacement Accommodatable Pressure Measuring Jig for Quality Assessment of Pressure Application Device (압력 인가 장치의 품질관리를 위한 변위 수용이 가능한 압력 측정용 지그의 유효성 평가)

  • Mun, Chang-Su;Jun, Sung-Chul;Noh, Si-Cheol
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.2
    • /
    • pp.61-66
    • /
    • 2020
  • Recently, a variety of electric anesthetics devices have been developed and used in clinical practice to reduce the fatigue of the operator during local anesthesia for dental procedures and to compensate for the disadvantages of manual anesthesia device. In this electric anesthesia injection device, the accurate and constant delivery of pressure for drug infusion is a very important performance factor. In order to evaluate the accuracy of the transfer pressure, a small pressure gauge using a load cell is often used, but since the elastic body inside the load cell may not be able to accommodate a sufficient displacement, an error may occur when evaluating pressure performance. For these reasons, in this study, we proposed and evaluated a silicon-chrome steel (Si-Cr steel) spring jig that can accommodate relatively large displacements that can be used when evaluating the performance of a pressure-controlled pressure application device using a load cell type pressure gauge. As a result of the pressure transmissibility test and repeated measurement results using a commercial dental anesthesia injection device, a more stable result was obtained when using a spring jig, and it was confirmed that the frequency of abnormally high measurement was reduced.

Seismic Fragility of Bridge Considering Foundation and Soil Structure Interaction (교량기초 종류 및 지반-구조물 상호작용을 고려한 지진취약도 분석)

  • Kim, Sun-Jae;An, Hyo-Joon;Song, Ki-il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.129-137
    • /
    • 2020
  • In performing the structural analysis, the foundation is considered to be a fixed end as a plastic hinge model. In this study, the displacements of the foundation, pier, and shoe were compared when the foundation modeled as a fixed end, a shallow foundation constructed on bedrock of 2m depth, and a pile foundation constructed in the 10m to 20m depth of bedrock. The shear force was also compared, and the probability of damage was calculated and compared for the critical condition. When calculated as a fixed end, the displacement of the foundation converged to 0mm, but the shallow foundation built on the bedrock with a depth of 2m caused relatively displacement, and the pile foundation constructed to contact the bedrock with a depth of 18m caused a larger displacement. In addition, it was analyzed that the displacement of the foundation, which is the lower structure, affects the displacement of the super structure, but the difference in shear force applied to the foundation was insignificant in the three cases. There was no difference between the shallow foundation and the pile foundation in the influence on the displacement of the top of the pier, but there was a big difference from the analysis assuming as a fixed end.

Hydro-Mechanical Modeling of Fracture Opening and Slip using Grain-Based Distinct Element Model: DECOVALEX-2023 Task G (Benchmark Simulation) (입자기반 개별요소모델을 이용한 암석 균열의 수리역학 거동해석: 국제공동연구 DECOVALEX-2023 Task G (Benchmark Simulation))

  • park, Jung-Wook;Park, Chan-Hee;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.270-288
    • /
    • 2021
  • We proposed a numerical method to simulate the hydro-mechanical behavior of rock fracture using a grain-based distinct element model (GBDEM) in the paper. As a part of DECOVALEX-2023 Task G, we verified the method via benchmarks with analytical solutions. DECOVALEX-2023 Task G aims to develop a numerical method to estimate the coupled thermo-hydro-mechanical processes within the crystalline rock fracture network. We represented the rock sample as a group of tetrahedral grains and calculated the interaction of the grains and their interfaces using 3DEC. The micro-parameters of the grains and interfaces were determined by a new methodology based on an equivalent continuum approach. In benchmark modeling, a single fracture embedded in the rock was examined for the effects of fracture inclination and roughness, the boundary stress condition and the applied pressure. The simulation results showed that the developed numerical model reasonably reproduced the fracture slip induced by boundary stress condition, the fracture opening induced by fluid injection, the stress distribution variation with fracture inclination, and the fracture roughness effect. In addition, the fracture displacements associated with the opening and slip showed good agreement with the analytical solutions. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study experiments.

Building change detection in high spatial resolution images using deep learning and graph model (딥러닝과 그래프 모델을 활용한 고해상도 영상의 건물 변화탐지)

  • Park, Seula;Song, Ahram
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.227-237
    • /
    • 2022
  • The most critical factors for detecting changes in very high-resolution satellite images are building positional inconsistencies and relief displacements caused by satellite side-view. To resolve the above problems, additional processing using a digital elevation model and deep learning approach have been proposed. Unfortunately, these approaches are not sufficiently effective in solving these problems. This study proposed a change detection method that considers both positional and topology information of buildings. Mask R-CNN (Region-based Convolutional Neural Network) was trained on a SpaceNet building detection v2 dataset, and the central points of each building were extracted as building nodes. Then, triangulated irregular network graphs were created on building nodes from temporal images. To extract the area, where there is a structural difference between two graphs, a change index reflecting the similarity of the graphs and differences in the location of building nodes was proposed. Finally, newly changed or deleted buildings were detected by comparing the two graphs. Three pairs of test sites were selected to evaluate the proposed method's effectiveness, and the results showed that changed buildings were detected in the case of side-view satellite images with building positional inconsistencies.

A study on platform-based preliminary design guidelines associated with the behaviour of piles to adjacent tunnelling (터널근접시공에 의한 말뚝의 거동을 고려한 플랫폼 기반의 예비 설계 가이드라인에 대한 연구)

  • Jeon, Young-Jin;Lee, Gyu-Seol;Lee, Jae-Cheol;Batbuyan, Chinzorig;Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.129-151
    • /
    • 2022
  • In the current work, a series of three-dimensional finite element analyses have been carried out to understand the behaviour of piles when the adjacent tunnelling passes underneath grouped piles with a reinforced pile cap. In the current study, the numerical analysis studied the computed results regarding the ground reinforcement condition between the tunnel and pile foundation. In addition, several key issues, such as the pile settlements, the axial pile forces, the shear stresses and the relative displacements have been thoroughly analysed, and the IoT platform based preliminary design guidelines were also presented. The pile head settlements of the nearest pile from the tunnel without the ground reinforcement increased by about 70% compared to the farthest pile from the tunnel with the maximum level of reinforcement. The quality management factor data of the piles were provided as API (Application Programming Interface) of various forms by the collection and refinement. Hence it has been shown that it would be important to provide the appropriate API by defining the each of data flow process when the data were created. The behaviour of the grouped piles with the pile cap, depending on the amount of ground reinforcement, has been extensively analysed, and the IoT platform regarding the quality management of piles has been suggested.

Experimental Study on Deformation Resistance Capacity of SY Permanent Steel Form for RC Beam and Girder under Casting Concrete (SY 비탈형 보 거푸집의 콘크리트 타설시 변형저항성능에 관한 실험적 연구)

  • Bae, Kyu-Woong;Shin, Sang-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.605-615
    • /
    • 2021
  • Recently, to shorten construction periods and reduce labor costs, the need for a corrugated beam form in the RC structure is being emphasized. The purpose of this study is to evaluate the deformation performance of SY Beam, a newly developed corrugated beam form work, during concrete casting. The standard cross-sectional shape of SY Beam was determined by modeling the deck structure of various thicknesses using the MIDAS GEN program. As a result, the cross-sectional dimensions of the SY Beam were determined to be 400mm and 450mm in width and height, respectively. A total of three SY Beam specimens were fabricated using steel plate thicknesses of 0.8, 1.0, and 1.2mm. The load conditions applied during casting concrete at the actual site are reflected. The vertical and horizontal displacements of the SY beam were measured during concrete casting. As a result, the vertical displacement showed a tendency to decrease as the thickness increased. Considering both vertical and horizontal displacement, the case with steel plate thickness of 1.2mm is the safest and most immediately applicable to the field. In the future, to secure manufacturability, constructability, and economics, the optimum steel plate thickness should be derived, and additional analysis and experimental studies for 1.05, 1.1, and 1.15mm are required.

Evaluation of the Stability of Ipseok-dae Columnar Joints in Mudeungsan National Park Using 3DEC (3DEC을 이용한 무등산국립공원 입석대 주상절리대의 안정성 평가)

  • Noh, Jeongdu;Kang, Seong Sueng
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.351-361
    • /
    • 2022
  • Numerical analysis performed to predict the behavior of Ipseok-dae columnar joints in Mudeungsan National Park to understand their stability and movement. The numerical analysis technique, 3DEC, is based on the discrete element method that can analysis discontinuities. The analysis used data for material properties derived from laboratory tests, which found that average density was 2.68 kN/m3, average normal stiffness was 3.15 GPa/m, average shear stiffness was 1.00 GPa/m, average cohesion was 0.51 MPa, and the average friction angle was 33°. The Ipseok-dae columnar joints were modeled on the basis of the field survey data for 15 joints located between the observation platform and the hiking trail. The numerical analysis assessed the behavior of each columnar joint by interpreting the displacement of the edges of its upper and lower surfaces. The greatest maximum displacement was found in columnar joint No. 6, and the greatest minimum displacement was found in joint No. 11. Analyzing the movements of five discontinuities in joint No. 11 indicated that the maximum displacement occurred at the 2nd level. The other levels were ordered 5th, 4th, 1st, and 3rd in terms of subsequent greatest displacements. Considering the total displacement in the 15 studied joints, the Ipseok-dae columnar joints are judged to be stable. However, considering the cultural and historical value of Mudeungsan National Park, it is regarded that the currents slope stability should be maintained by monitoring the individual rock blocks of the joints.