• Title/Summary/Keyword: Displacements

Search Result 2,673, Processing Time 0.033 seconds

The Slope Stabilization of Solid Waste Landfill Liner System (폐기물매립장의 사면차수체계 안정화 연구)

  • Shin, Eunchul;Kim, Jongin;Park, Jeongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.3
    • /
    • pp.21-28
    • /
    • 2009
  • As the natural aggregates such as sand and clay are getting exhausted, the quantity of utilizing geosynthetics is being increased in the solid waste landfill. Especially, the waste landfills have been constructed at the gorge in the mountainous area and reclaimed land from the sea in the Korean Peninsula. Those areas are not favorable for construction of waste landfill in geotechnical engineering aspect. In this study, the frictional characteristics of geosynthetics that used in the waste landfill were estimated. Then, the studies of the behavior of geosynthetics and stability of LDCRS (Leachate Detection, Collection, and Removal System) of side slope were conducted in the waste landfill by means of the pilot test, and numerical analysis. Geocomposite which is combined type or separated type is influenced on the strain itself, and also implicated in the stress and strain of geomembrane at the lower layer. The strain on the combined type of geocomposite is about 50% smaller than that of the separated type at the side slope. The lateral displacement and settlement of top at the slope with the separated type are three times greater than that of the combined type. In the numerical analysis, discontinuous plans in between ground and geosynthetic, geosynthetic and geosynthetic, goesynthetic and waste have been modeled with the interface element. The results gave a good agreement with the field large-scale model test. The relative displacements of geosynthetics were also investigated and hence the interface modeling of liner system is appropriate for analysis of geosynthetics liner system in the waste landfill.

  • PDF

Analysis of the Crystal Structure and the Relation with the Temperature Coefficient au_\varepsilon$ in $BaORe_2O_3TiO_2$ (Re=La, Nd, Y) Microwave Dielectric Ceramics ($BaORe_2O_3TiO_2$ (Re=La, Nd, Y)계 고주파 유전체의 결정구조 분석 및 온도계수 au_\varepsilon$와의 관련성)

  • 김정석;강현주;심해섭;이창희;천채일
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.136-144
    • /
    • 1999
  • Crystal structures of tungsten-bronze type microwave dielectric ceramics, $BaOLa_2O_34TiO_2$ (BLT) and $BaO(Nd_{0.77}Y_{0.23})_4TiO_2$ (B(NY)T), were analysed using the Rietveld method. The most relibale refinement was obtained by refining the cation and anion positions from the x-ray and neutron diffraction data, respectively. The ambiguites inherent in the refined crystal structure by Mateeva et al. were resolved. The $BaORe_2O_34TiO_2$ structure consiste of $3\times2$ perovskite blocks and 4 pentagon-channels. The Ti-O6 octahedrons are distroted and tilted, which, consequently, induces the displacements of Ba and Re ions producing the superlattics (c$\approx$ 7.6 $\AA$). The B(NY)T showed more severely tilted Ti-O6 octahedrons. The relative dielectric constant $\varepsilon_{\gamma}$ and temperature coefficient $\tau_\varepsilon$ are 109.5 and-$180 ppm/^{\circ}C$ in BLT, 76 and $+40 ppm/^{\circ}C$ in B(NY)T, respectively. The small Re ions produced a positive $\tau_\varepsilon$. The relation between $\tau_\varepsilon$ and the octahedron tilting in complex perovskite is discussed for the tungsten bronze type structure.

  • PDF

HISTOLOGIC CHANGE OF THE POSTERIOR ATTACHMENT IN ANTERIOR DISC DISPLACEMENT OF THE TEMPOROMANDIBULAR JOINT-A NEW MODEL OF INTERNAL DERANGEMENT IN RABBITS (실험가토의 악관절원판 변위시 후방부착조직의 변화)

  • Kim, Tae-Woo;Ko, Jea-Seung;Chang, Young-il
    • The korean journal of orthodontics
    • /
    • v.23 no.4 s.43
    • /
    • pp.503-527
    • /
    • 1993
  • This paper describes a new method to create an animal model for TMJ internal derangement in the New Zealand white rabbits and the light and electron microscopical changes of posterior attachment of them. Twenty six rabbits(2.5-3.0kg), four normal and twenty two experimental, were used. The right disc of experimental animal was displaced anteriorly without sectioning the posterior attachment and tied to the zygomatic arch with nylon not to be reduced to the original position. The left TMJ was sham-operated to be compared with its right experimental one. Normal animals were sacrificed one day and eight weeks after experiment. Experimental animals were sacrificed one day, ten days, three weeks, five weeks and eight weeks after surgery respectively. They were fixed intravenously with $2\%$ glutaldehyde under general anesthesia and the samples of them were processed for light and electron microscopic examination. The purpose of this experiment is to make a suitable animal model of disc displacement without reduction for studying and understanding the cellular and morphologic events in posterior attachment of TMJ including early changes which were difficult to be observed in human TMJs. The results of this investigation suggest the following conclusions : 1. Authors induced anterior disc displacement surgically in rabbits with new method to examine histologic changes of posterior attachment. Tissue reactions of this model seem to be similar to those observed in human disc displacement. We think this animal model for anterior disc displacement may be used to explore and evaluate objectively the effects of many treatment modalities in disc displacements. 2. The animal disease model showed inflammation at early stage(one and ten days). At this stage there were mild-to-severe mononuclear inflammatory cell infiltration, numerous newly formed vessels, vessel dilatation and engormement and many fibroblasts. 3. At middle stage(three weeks), fibrosis occurred, where fibroblasts decreased in number, but their cytoplasm was profuse indicating high activity. Collagen fibers increased in number and the tissue looked more dense. 4. At late stage(five weeks and eight weeks) showed degenerative changes including perforation of posterior attachment, disintegration of collagen fiber bundles, degeneration of fibroblasts, metastatic ossification, and dystrophic calcification.

  • PDF

Lateral Behavior of Abutment Piles in Full Integral Bridge During 7 Days in Response to Hydration Heat and Drying Shrinkage (수화열과 건조수축에 의한 7일간의 완전 일체식 교량 교대 말뚝기초의 횡방향 거동)

  • ;;;;Thomas A. Bolte
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.127-149
    • /
    • 2003
  • The bridge tested was 3 spans 90m-long PSC beam concrete bridge with a stub-type abutment which had a skew of 60$^{\circ}$ about the axis of bridge. A cement concrete was placed at the superstructural slab of the bridge. Inclinometers and straingauges were installed at piles as well. During 7 days-curing of superstructural slab, the pile behavior in response to hydration heat and drying shrinkage of the slab was monitored. Then monitored values were compared with the horizontal movement obtained from the HACOM program and the calculated lateral behavior obtained from the nonlinear p-y curves of pile. As a result, lateral behavior of H-piles by the field measurement occurred due to the influence of hydration heat and drying shrinkage obtained during curing of superstructural concrete. The lateral displacements by hydration heat and drying shrinkage were 2.2mmand 1.4mm respectively. It was observed as well that the inflection point of lateral displacement of pile was shown at 1.3m down from footing base. It means that the horizontal movement of stub abutment did not behave as the fixed head condition of a pile but behave as a similar condition. The measured bending stress did not show the same behavior as the fixed head condition of pile but showed a similar condition. The increment of maximum bending stress obtained from the nonlinear p-y curves of pile was about 300(kgf/$\textrm{km}^2$) and was 2 times larger than measured values regardless of installation places of straingauges. Meanwhile, lateral load, maximum lateral displacement, maximum bending stress and maximum bending moment of pile showed a linear behavior as curing of superstructural concrete slab.

Analysis of Seismic Response of the Buried Pipeline with Pipe End Conditions (II) (단부 경계조건을 고려한 매설관의 동적응답 해석 (II))

  • Lee, Byong-Gil;Park, Byung-Ho;Jeong, Jin-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.328-337
    • /
    • 2005
  • This work reports results of our study on the dynamic responses of the buried pipelines both along the axial and the transverse directions under various boundary end conditions. We have considered three cases, i.e., the free ends, the fixed ends, and the fixed-free ends for the axial direction, and three more cases including the guided ends, the simply supported ends, and the supported-guided ends for the transverse direction. In order to investigate the effect of the boundary end conditions for the dynamic responses of the buried pipeline, we have devised a computer program to find the solutions of the formulae on the dynamic responses (displacements, axial strains, and bending strains) under the various boundary end conditions considered in this study. The dynamic behavior of the buried pipelines for the forced vibration is found to exhibit two different forms, a transient response and a steady state response, depending on the time before and after the transfer of a seismic wave on the end of the buried pipeline. The former is identified by a slight change in its behavior before the sinusoidal-shaped seismic wave travels along the whole length of the pipeline whereas the latter by the complete form of a sinusoidal wave when the wave travels throughout the pipeline. The transient response becomes insignificant as the wave speed increases. We have observed a resonance when the mode wavelength matches the wavelength of the seismic wave, where the mode number(k) of resonance for the axial direction is found to be $\overline{\omega}/{\pi}V+1/2$ for the fixed-free ends, $\overline{\omega}/{\pi}V+1$ for the free ends, and $\overline{\omega}/{\pi}V$ for the fixed ends, respectively. By adding 10 more modes to the mode number(k) of resonance, we were able to study all the dynamic responses of the buried pipeline for the axial direction. On the other hand, we have not been able to observe a resonance in the analysis for the transverse direction, because the dynamic responses are found to vanish after the seventh mode. From the results of the dynamic responses at the many points of the pipeline, we have found that the responses appeared to be dependent critically on the boundary end conditions. Such effects are found to be most prominent especially for the maximum values of the displacement and the strain and its position.

  • PDF

Decomposition of Shear Resistance Components in Reinforced Concrete Beams (철근콘크리트 보의 전단저항 성분 분해)

  • Rhee, Chang-Shin;Shin, Geun-Ok;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.819-825
    • /
    • 2006
  • The objective of the present study is to verify the validity of a new truss model for evaluating the contribution by arch action to shear resistance in shear-critical reinforced concrete beams. The new truss model is based on the relationship between shear and bending moment in a beam subjected to combined shear and bending. The compatibility condition of the shear deformation that deviates from Bernoulli bending plane is formulated utilizing the smeared truss idealization with an inclined compression chord. The Modified Compression Filed Theory is employed to calculate the shear deformation of the web, and the relative axial displacements of the compression and the tension chord by the shear flow are also calculated. From this shear compatibility condition in a beam, the shear contribution by the arch action is numerically decoupled. Then the validity of the model is examined by applying the model to some selected test beams in literatures. On the basis of the analytical results, the contribution by the web to shear resistance can be constant and have an excellent linear correlation with the web reinforcement ratio. The present decoupling approach may provide a simple way for the assessment of the role of each parameter or mechanism that affects the ultimate shear behavior of reinforced concrete beams.

A Study on Dynamic Behaviour of Cable-Stayed Bridge by Vehicle Load (차량하중에 의한 사장교의 동적거동에 관한 연구)

  • Park, Cheun Hyek;Han, Jai Ik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1299-1308
    • /
    • 1994
  • This paper is considered on the dynamic behavior and the dynamic impact coefficient on the cable-stayed bridge under the vehicle load. The method of static analysis, that is, the transfer matrix method is used to get influence values about displacements, section forces of girder and cable forces. Gotten influence values were used as basic data to analyse dynamic behavior. This paper used the transfer matrix method because it is relatively simpler than the finite element method, and calculating speed of computer is very fast and the precision of computation is high. In the process of dynamic analysis, the uncoupled equation of motion is derived from simultaneous equation of the motion of cable-stayed bridge and vehicle travelling by using mode shape, which was borne from system of undamped free vibration. The solution of the uncoupled equation of motion, that is, time history of response of deflections, velocity and acceleration on reference coordinate system, is found by Newmark-${\beta}$ method, a kind of direct integral method. After the time history of dynamic response was gotten, and it was transfered to the time history of dynamic response of cable-stayed bridge by linear transformation of coordinates. As a result of this numerical analysis, effect of dynamic behavior for cable-stayed bridge under the vehicle load has varied depending on parameter of design, that is, the ratio of span, the ratio of main span length, tower height, the flexural rigidity of longitudinal girder, the flexural rigidity of tower, and the cable stiffness, investigated. Very good agreements with the existing solution in the literature are shown for the uncracked plate as well as the cracked plate.

  • PDF

Seismic safety assessment of eynel highway steel bridge using ambient vibration measurements

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Ozdemir, Hasan
    • Smart Structures and Systems
    • /
    • v.10 no.2
    • /
    • pp.131-154
    • /
    • 2012
  • In this paper, it is aimed to determine the seismic behaviour of highway bridges by nondestructive testing using ambient vibration measurements. Eynel Highway Bridge which has arch type structural system with a total length of 216 m and located in the Ayvaclk county of Samsun, Turkey is selected as an application. The bridge connects the villages which are separated with Suat U$\breve{g}$urlu Dam Lake. A three dimensional finite element model is first established for a highway bridge using project drawings and an analytical modal analysis is then performed to generate natural frequencies and mode shapes in the three orthogonal directions. The ambient vibration measurements are carried out on the bridge deck under natural excitation such as traffic, human walking and wind loads using Operational Modal Analysis. Sensitive seismic accelerometers are used to collect signals obtained from the experimental tests. To obtain experimental dynamic characteristics, two output-only system identification techniques are employed namely, Enhanced Frequency Domain Decomposition technique in the frequency domain and Stochastic Subspace Identification technique in time domain. Analytical and experimental dynamic characteristic are compared with each other and finite element model of the bridge is updated by changing of boundary conditions to reduce the differences between the results. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of highway bridges. After finite element model updating, maximum differences between the natural frequencies are reduced averagely from 23% to 3%. The updated finite element model reflects the dynamic characteristics of the bridge better, and it can be used to predict the dynamic response under complex external forces. It is also helpful for further damage identification and health condition monitoring. Analytical model of the bridge before and after model updating is analyzed using 1992 Erzincan earthquake record to determine the seismic behaviour. It can be seen from the analysis results that displacements increase by the height of bridge columns and along to middle point of the deck and main arches. Bending moments have an increasing trend along to first and last 50 m and have a decreasing trend long to the middle of the main arches.

A preliminary study on the use of analytic hierarchy process for selecting a optimum trenchless excavation method (최적의 비개착공법 선정을 위한 계층분석법의 적용에 관한 기초연구)

  • Kang, Tae-Ho;Chang, Soo-Ho;Choi, Soon-Wook;Lee, Chulho;Cho, Jinwoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.685-693
    • /
    • 2015
  • There have been high demands for urban underground structures. However, they should be rapidly constructed while maintaining the functions of adjacent structures and road systems especially in urban areas. In this respect, trenchless excavation methods are considered to very effective in minimizing ground displacements during excavation works. A variety of field conditions such as economic, technical and environmental aspects should be taken into consideration when an optimum trechless excavation method is to be chosen in a given condition. Therefore, this study aims to carry out a fundamental study to select an optimum trenchless excavation method by the decision making technique. Especially, AHP (Analytic Hierarchy Process) which is a kind of a multiple attribute decision making process is adopted to consider the opinions of experts and to derive reliable decision criteria. As a result, the weights of key factors and the most effective trenchless methods for different ground conditions were proposed in this study.

A study on critical strain based damage-controlled test for the evaluation of rock tunnel stability (암반터널 안정성 평가를 위한 손상제어실험 기반의 한계변형률에 관한 연구)

  • Lee, Kang-Hyun;Kim, Do-Hoon;Park, Jeong-Jun;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.501-517
    • /
    • 2011
  • In general, the tunnel stability during excavation is assessed by comparing measured displacements at roof and sidewall to control criteria. The control criteria were established based on the past experience that considered ground conditions, size of the tunnel cross section, construction method, supports, etc. Therefore, a number of researches on the control criteria using the critical strain have been conducted. However, the critical strain obtained from uniaxial compression tests have drawbacks of not taking damage in rock mass due to increase of stress level and longitudinal arching into account. In this paper, damage-controlled tests simulating stress level and longitudinal arching during tunnel excavation were carried out in addition to uniaxial compression tests to investigate the critical strain characteristics of granite and gneiss that are most abundant rock types in Korean peninsula. Then, the critical strains obtained from damage-controlled tests were compared to those from uniaxial compression tests; the former showed less values than the latter. These results show that the critical strain obtained from uniaxial compression tests has to be reduced a little bit to take stress history during tunnel excavation into account. Moreover, the damage critical strain was proposed to be used for assessment of the brittle failure that usually occurs in deep tunnels.