• 제목/요약/키워드: Displacements

검색결과 2,654건 처리시간 0.019초

Thin-Type 초음파모터의 설계 및 제작 (Design and Fabrication of a Thin-Type Ultrasonic Motor)

  • 김종욱;박충효;정현호;정성수;박태곤
    • 한국전기전자재료학회논문지
    • /
    • 제23권7호
    • /
    • pp.525-529
    • /
    • 2010
  • In this paper, the characteristics of a thin-type ultrasonic motor generating elliptical displacements analyzed by FEM are presented, and then fabrication of the motor is then described. The structure of the motor consists of sixteen ceramic pieces attached to the upper and bottom surfaces of an elastic body. The principle of the motor is to apply alternating voltages which have a 90 phase difference to the attached ceramics, and then elliptical displacements are generated at four edges of the elastic body. Then the rotor is moved by the elliptical displacements. In the case of a ceramic thickness of 1.5, the highest speed was obtained at 79 kHz. In the case of a ceramic thickness of 2 mm, the highest speed was obtained at 77.5 kHz. Consequently, the speed and torque of the ultrasonic motor (USM) increased linearly with increasing applied voltage.

회전하는 환상 디스크의 면내 고유진동 해석 (In-plane Natural Vibration Analysis of a Rotating Annular Disk)

  • 송승관;곽동희;김창부
    • 한국소음진동공학회논문집
    • /
    • 제19권2호
    • /
    • pp.208-216
    • /
    • 2009
  • In this paper, we present the equations of motion by which the natural vibration of a rotating annular disk can be analyzed accurately. These equations are derived from the theory of finite deformation and the principle of virtual work. The radial displacements of annular disk at the steady state where the disk is rotating at a constant angular velocity are determined by non-linear static equations formulated with 1-dimensional finite elements in radial direction. The linearlized equations of the in-plane vibrations at the disturbed state are also formulated with 1-dimensional finite elements in radial direction along the number of nodal diameters. They are expressed as in functions of the radial displacements at the steady state and the disturbed displacements about the steady state. In-plane static deformation modes of an annular disk are used as the displacement functions for the interpolation functions of the 1-dimensional finite elements. The natural vibrations of an annular disk with different boundary conditions are analyzed by using the presented model and the 3-dimensional finite element model to verify accuracy of the presented equations of motion. Its results are compared and discussed.

Earthquake response of roller compacted concrete dams including galleries

  • Karabulut, Muhammet;Kartal, Murat Emre
    • Structural Engineering and Mechanics
    • /
    • 제72권2호
    • /
    • pp.141-153
    • /
    • 2019
  • The effect of galleries on the earthquake behavior of dams should be investigated to obtain more realistic results. Therefore, a roller compacted concrete (RCC) dam with and without galleries are examined under ground motion effects. For this purpose, Cine RCC dam constructed in Aydın, Turkey, is selected in applications. The optimal mesh around galleries is investigated to obtain the most realistic results. Two-dimensional finite element models of Cine RCC dam with and without galleries are prepared by using ANSYS software. Empty and full reservoir conditions were taken into account in the time-history analyses. Hydrodynamic effect of the reservoir water was taken into account considering two-dimensional fluid finite elements based on the Lagrangian approach. It is examined that how principle stresses and displacements change by height and during earthquake. The dam-foundation-reservoir interaction was taken into consideration with contact-target element pairs. The displacements and principle stress components obtained from the linear analyses are compared each other for various cases of reservoir water and galleries. According to numerical analyses, the effect of galleries is clear on the response of RCC dam. Besides, hydrodynamic water effect obviously increases the principle stress components and horizontal displacements of the dam.

Dynamic behaviors of the bridge considering pounding and friction effects under seismic excitations

  • Kim, Sang-Hyo;Lee, Sang-Woo;Mha, Ho-Seong
    • Structural Engineering and Mechanics
    • /
    • 제10권6호
    • /
    • pp.621-633
    • /
    • 2000
  • Dynamic responses of a bridge system with several simple spans under longitudinal seismic excitations are examined. The bridge system is modeled as the multiple oscillators and each oscillator consists of four degrees-of-freedom system to implement the poundings between the adjacent oscillators and the friction at movable supports. Pounding effects are considered by introducing the impact elements and a bi-linear model is adopted for the friction force. From the parametric studies, the pounding is found to induce complicated seismic responses and to restrain significantly the relative displacements between the adjacent units. The smaller gap size also restricts more strictly the relative displacement. It is found that the relative displacements between the abutment and adjacent pier unit became much larger than the responses between the inner pier units. Consequently, the unseating failure could take a place between the abutment and nearby pier units. It is also found that the relative displacements of an abutment unit to the adjacent pier unit are governed by the pounding at the opposite side abutment.

Hybrid perfectly-matched-layers for transient simulation of scalar elastic waves

  • Pakravan, Alireza;Kang, Jun Won;Newtson, Craig M.;Kallivokas, Loukas F.
    • Structural Engineering and Mechanics
    • /
    • 제51권4호
    • /
    • pp.685-705
    • /
    • 2014
  • This paper presents a new formulation for forward scalar wave simulations in semi-infinite media. Perfectly-Matched-Layers (PMLs) are used as a wave absorbing boundary layer to surround a finite computational domain truncated from the semi-infinite domain. In this work, a hybrid formulation was developed for the simulation of scalar wave motion in two-dimensional PML-truncated domains. In this formulation, displacements and stresses are considered as unknowns in the PML domain, while only displacements are considered to be unknowns in the interior domain. This formulation reduces computational cost compared to fully-mixed formulations. To obtain governing wave equations in the PML region, complex coordinate stretching transformation was introduced to equilibrium, constitutive, and compatibility equations in the frequency domain. Then, equations were converted back to the time-domain using the inverse Fourier transform. The resulting equations are mixed (contain both displacements and stresses), and are coupled with the displacement-only equation in the regular domain. The Newmark method was used for the time integration of the semi-discrete equations.

반복사인격자에서 동시에 생기는 두 가지 무아레 무늬를 이용한 회전변위의 가시적 측정 (Visual Measurement of Rotational Displacements by Using Two Different Moire Fringes Simultaneously Generated by Repeated Sinusoidal Gratings)

  • 정연홍;오정효;조재흥
    • 한국광학회지
    • /
    • 제19권4호
    • /
    • pp.302-309
    • /
    • 2008
  • 컴퓨터 전산모의와 회전자를 이용한 실험을 통하여 회전변위에 따른 반복사인격자 한 쌍이 만드는 무아레 무늬의 변화를 세밀하게 조사하여 반복사인격자가 겹쳐서 동시에 생기는 두 가지의 서로 다른 무아레 무늬를 사용하는 작은 회전변위를 측정하는 가시적 방법을 보여준다. 이 무아레 무늬는12도 이상의 큰 각도 측정에 유용한 장주기의 넓고 긴 직선무늬와 12도 이하의 작은 각도 측정에 유리한 좁고 짧은 복잡한 직선무늬로 이루어져 있다. 그리고 무아레 무늬의 회전방향에 따라 회전변위의 회전방향도 동시에 가시적으로 판별할 수 있다.

Time-dependent creep analysis of a functionally graded beam with trapezoidal cross section using first-order shear deformation theory

  • Mirzaei, Manouchehr Mohammad Hosseini;Loghman, Abbas;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • 제30권6호
    • /
    • pp.567-576
    • /
    • 2019
  • Time-dependent creep analysis of a rotating functionally graded cantilever beam with trapezoidal longitudinal cross section subjected to thermal and inertia loading is investigated using first-order shear deformation theory (FSDT). The model described in this paper is a simple simulation of a turbine blade working under creep condition. The material is a metal based composite reinforced by a ceramic where the creep properties of which has been described by the Sherby's constitutive model. All mechanical and thermal properties except Poisson's ratio are assumed to be variable longitudinally based on the volume fraction of constituent. The principle of virtual work as well as first order shear deformation theory is used to derive governing equations. Longitudinal distribution of displacements and stresses are investigated for various volume fractions of reinforcement. Method of successive elastic solution is employed to obtain history of stresses and creep deformations. It is found that stresses and displacements approach their steady state values after 40000 hours. The results presented in this paper can be used for selection of appropriate longitudinal distribution of reinforcement to achieve the desired stresses and displacements.

Optimal lateral load pattern for pushover analysis of building structures

  • Habibi, Alireza;Saffari, Hooman;Izadpanah, Mehdi
    • Steel and Composite Structures
    • /
    • 제32권1호
    • /
    • pp.67-77
    • /
    • 2019
  • Pushover analysis captures the behavior of a structure from fully elastic to collapse. In this analysis, the structure is subjected to increasing lateral load with constant gravity one. Neglecting the effects of the higher modes and the changes in the vibration characteristics during the nonlinear analysis are the main obstacles of the proposed lateral load patterns. To overcome these drawbacks, whereas some methods have been presented to achieve updated lateral load distribution, these methods are not precisely capable to predict the response of structures, precisely. In this study, a new method based on optimization procedure is developed to obtain a lateral load pattern for which the difference between the floor displacements of pushover and Nonlinear Dynamic Analyses (NDA) is minimal. For this purpose, an optimization problem is considered and the genetic algorithm is applied to calculate optimal lateral load pattern. Three special moment resisting steel frames with different dynamic characteristics are simulated and their optimal load patterns are derived. The floor displacements of these frames subjected to the proposed and conventional load patterns are acquired and the accuracy of them is evaluated via comparing with NDA responses. The outcomes reveal that the proposed lateral load distribution is more accurate than the previous ones.

Dynamic response of a linear two d.o.f system visco-elastically coupled with a rigid block

  • Di Egidio, Angelo;Pagliaro, Stefano;Fabrizio, Cristiano;de Leo, Andrea M.
    • Coupled systems mechanics
    • /
    • 제8권4호
    • /
    • pp.351-375
    • /
    • 2019
  • The present work investigates the use of a rigid rocking block as a tool to reduce vibrations in a frame structure. The study is based on a simplified model composed by a 2-DOF linear system, meant to represent a general M-DOF frame structure, coupled with a rocking rigid block through a linear visco-elastic device, which connects only the lower part of the 2-DOF system. The possibility to restrain the block directly to the ground, by means of a second visco-elastic device, is investigated as well. The dynamic response of the model under an harmonic base excitation is then analysed in order to evaluate the effectiveness of the coupling in reducing the displacements and the drift of the 2-DOF system. The nonlinear equations of motion of the coupled assemblage 2-DOF-block are obtained by a Lagrangian approach and then numerically integrated considering some reference mechanical and geometrical quantities as variable parameters. It follows an extensive parametric analysis, whose results are summarized through behaviour maps, which portray the ratio between the maximum displacements and drifts of the system, with and without the coupling with the rigid block, for several combinations of system's parameters. When the ratio of the displacements is less than unity, the coupling is considered effective. Results show that the presence of the rocking rigid block improves the dynamics of the system in large ranges of the characterizing parameters.

Application of an extended Bouc-Wen model for hysteretic behavior of the RC structure with SCEBs

  • Dong, Huihui;Han, Qiang;Du, Xiuli
    • Structural Engineering and Mechanics
    • /
    • 제71권6호
    • /
    • pp.683-697
    • /
    • 2019
  • The reinforced concrete (RC) structures usually suffer large residual displacements under strong motions. The large residual displacements may substantially reduce the anti-seismic capacity of structures during the aftershock and increase the difficulty and cost of structural repair after an earthquake. To reduce the adverse residual displacement, several self-centering energy dissipation braces (SCEBs) have been proposed to be installed to the RC structures. To investigate the seismic responses of the RC structures with SCEBs under the earthquake excitation, an extended Bouc-Wen model with degradation and self-centering effects is developed in this study. The extended model realized by MATLAB/Simulink program is able to capture the hysteretic characteristics of the RC structures with SCEBs, such as the energy dissipation and the degradation, especially the self-centering effect. The predicted hysteretic behavior of the RC structures with SCEBs based on the extended model, which used the unscented Kalman filter (UKF) for parameter identification, is compared with the experimental results. Comparison results show that the predicted hysteretic curves can be in good agreement with the experimental results. The nonlinear dynamic analyses using the extended model are then carried out to explore the seismic performance of the RC structures with SCEBs. The analysis results demonstrate that the SCEB can effectively reduce the residual displacements of the RC structures, but slightly increase the acceleration.