• Title/Summary/Keyword: Displacement vector

Search Result 163, Processing Time 0.024 seconds

Analysis of Tidal Effects on Network-based GPS Positioning (조석영향에 의한 망기반 GPS 측위 변화 분석)

  • Yoon, Ha-Su;Hong, Chang-Ki;Kwon, Jay-Hyoun;Choi, Yun-Soo
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.31-34
    • /
    • 2010
  • The rover positioning is performed by estimating the baseline vector components in doubledifference positioning mode. This means that relative displacement due to the tide effects can be neglected when the distance between the reference and rover station is relatively short. However, the tide effects should be carefully modeled and removed as the baseline length gets longer. In this study, the relative displacement over the Korean Peninsula due to tide effects are examined through the numerical analysis. The results show that the tide modeling is required for the precise GPS positioning at cm-level accuracy.

  • PDF

Kinematic Comparative Analysis of Short Turns between Skilled and Unskilled Alpine Skiers

  • Jo, Hyun Dai
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.4
    • /
    • pp.219-226
    • /
    • 2019
  • Objective: The purpose of this study is to provide a better understanding of short turn mechanism by describing short turns after kinematic analysis and provide skiers and winter sports instructors with data through which they are able to analyze right postures for turns in skiing in a systematic, rational and scientific manner. Method: For this, a mean difference of kinematic variables (ski-hip angle, ski-shoulder twist angle, pole checking angle, the center of gravity (CG) displacement, trunk forward lean angle) was verified against a total of 12 skiers (skilled and unskilled, 6 persons each), regarding motions from the up-start to down-end points for short turns. Results: There was no difference in a ski-hip twist angle. The ski-shoulder twist angle was large at the up-start point while a pole-checking angle was high at the down-end point in skilled skiers. Concerning the horizontal displacement of CG, skilled skiers were positioned on the right side at the upstart point. No significant difference was observed in the trunk forward lean angle. Conclusion: According to the ski-shoulder twist angle and CG horizontal displacement results, the upper body should be kept leant toward the pole. In addition, big turns should be made via edging and angulation. During pole checking, the hand holding the pole should be thrown and released toward a vector direction of the forearm.

Improved Kalman filter with unknown inputs based on data fusion of partial acceleration and displacement measurements

  • Liu, Lijun;Zhu, Jiajia;Su, Ying;Lei, Ying
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.903-915
    • /
    • 2016
  • The classical Kalman filter (KF) provides a practical and efficient state estimation approach for structural identification and vibration control. However, the classical KF approach is applicable only when external inputs are assumed known. Over the years, some approaches based on Kalman filter with unknown inputs (KF-UI) have been presented. However, these approaches based solely on acceleration measurements are inherently unstable which leads poor tracking and so-called drifts in the estimated unknown inputs and structural displacement in the presence of measurement noises. Either on-line regularization schemes or post signal processing is required to treat the drifts in the identification results, which prohibits the real-time identification of joint structural state and unknown inputs. In this paper, it is aimed to extend the classical KF approach to circumvent the above limitation for real time joint estimation of structural states and the unknown inputs. Based on the scheme of the classical KF, analytical recursive solutions of an improved Kalman filter with unknown excitations (KF-UI) are derived and presented. Moreover, data fusion of partially measured displacement and acceleration responses is used to prevent in real time the so-called drifts in the estimated structural state vector and unknown external inputs. The effectiveness and performance of the proposed approach are demonstrated by some numerical examples.

Development of an Image Tracking System Using an USB Camera on an Embedded System (USB Camera를 이용한 이미지 트래킹을 위한 Pan/Tilt 제어용 Embedded System 개발)

  • Kim, Hie-Sik;Nam, Chul;Ayurzana, Odgera;Ha, Kwan-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.182-184
    • /
    • 2005
  • An embedded system has been applied to many fields including households and industrial sites. The embedded system is implemented fur image tracking in security area. This system supports a fixed IP far the reliable server operation on TCP/IP networks. A real time video image on the is analyzed to detect a certain invader who jumped into the observed area. The digital camera is connected at the USB host port of the target board. The video images from the video camera is continuously analyzed and displayed at the Linux web-server. The moving vector of the invaders on the continuous image frames is calculated and then it sends the calculated pan/tilt movement. That used Block matching algorithm and edge detection algorithm for past speed. And the displacement vector is used at pan/tilt motor control through RS232 serial cable. The experiment result showed tracking performance by the moving part speed of 10 to 150 pixels/sec.

  • PDF

Motion Recognition of Smartphone using Sensor Data (센서 정보를 활용한 스마트폰 모션 인식)

  • Lee, Yong Cheol;Lee, Chil Woo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1437-1445
    • /
    • 2014
  • A smartphone has very limited input methods regardless of its various functions. In this respect, it is one alternative that sensor motion recognition can make intuitive and various user interface. In this paper, we recognize user's motion using acceleration sensor, magnetic field sensor, and gyro sensor in smartphone. We try to reduce sensing error by gradient descent algorithm because in single sensor it is hard to obtain correct data. And we apply vector quantization by conversion of rotation displacement to spherical coordinate system for elevated recognition rate and recognition of small motion. After vector quantization process, we recognize motion using HMM(Hidden Markov Model).

Vibration Analysis of a Rectangular Plate with Stiffeners Using the Transfer Stiffness Coefficient Method (전달강성계수법을 이용한 보강재를 갖는 사각평판의 진동해석)

  • Moon, D.H.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.42-49
    • /
    • 2005
  • The vibration analysis of a rectangular plate with stiffeners is formulated by using the transfer stiffness coefficient method (TSCM). This method is based on the concept of the successive transmission of stiffness coefficients which are defined as the relationship between the force vector and the displacement vector at an arbitrary nodal line. In order to confirm the validity of the present method, bending vibration analysis for a rectangular plate with stiffener is carried out on a personal computer by using the present method and the finite element method (FEM). Through comparing computational results of the TSCM and the FEM, the effectivness of the TSCM from the viewpoint of computational cost, that is, computational time and storage is demonstrated.

  • PDF

Magnetothermoelastic stress in orthotropic hollow cylinders due to radially symmetric thermal and mechanical loads

  • Dai, H.L.;Fu, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.699-707
    • /
    • 2006
  • In the paper, a direct method of solution of the Navier equation is presented. An orthotropic thick hollow cylinder under a one-dimensional steady-state temperature distribution and a uniform magnetic field with general types of thermal and mechanical boundary conditions is considered. The Navier equation in terms of displacement is derived and solved analytically by the direct method, and magnetothermoelastic responses and perturbation of the magnetic field vector in the orthotropic thick hollow cylinder is described. The present method is suitable for orthotropic thick hollow cylinders placed in an axial magnetic field with arbitrary thermal and mechanical boundary conditions. Finally, numerical examples are carried out and discussed.

Investigation on electromagnetothermoelastic interaction of functionally graded piezoelectric hollow spheres

  • Dai, Hong-Liang;Rao, Yan-Ni
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.49-64
    • /
    • 2011
  • An analytical method is presented to investigate electromagnetothermoelastic behaviors of a hollow sphere composed of functionally graded piezoelectric material (FGPM), placed in a uniform magnetic field, subjected to electric, thermal and mechanical loads. For the case that material properties obey an identical power law in the radial direction of the FGPM hollow sphere, exact solutions for electric displacement, stresses, electric potential and perturbation of magnetic field vector in the FGPM hollow sphere are determined by using the infinitesimal theory of electromagnetothermoelasticity. Some useful discussion and numerical examples are presented to show the significant influence of material inhomogeneity. The aim of this research is to understand the effect of composition on electromagnetothermoelastic stresses and to design optimum FGPM hollow spheres.

Design Technique for Minimizing the Crosstalk Effect in Multiaxis Thrust Measurement Stand (다축 시험대의 상호 간섭 최소화 설계기법)

  • Kim, Joung-Keun;Yoon, Il-Sun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.13-19
    • /
    • 2007
  • This paper described design method to minimize the crosstalk effect of multiaxis thrust measurement stand which can measure the thrust vector control performance of Solid Rocket Motor. This paper presents a theoretical solution for predicting the magnitude of crosstalk and calculates design sensitivity. The results indicate that the most important parameter of crosstalk is the displacement of flexure-loadcell-flexure assembly. And shape, dimension and mechanical properties of flexure and loadcell can also influence the magnitude of crosstalk.

Levy-type solution for analysis of a magneto-electro-elastic panel

  • Jia He;Xuejiao Zhang;Hong Gong;H. Elhosiny Ali;Elimam Ali
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.719-729
    • /
    • 2023
  • This paper studies electro-magneto-mechanical bending studying of the cylindrical panels based on shear deformation theory. The cylindrical panel is constrained with two simply-supported edges at longitudinal direction and two clamped boundary conditions at circumferential direction. The governing equations are derived based on the principle of virtual work in cylindrical coordinate system. Levy-type solution of the governing equations is derived to reduce two dimensional PDEs to a 2D ODEs. The reduced ordinary differential equation is solved using the Eigen-value Eigen-vector method for the clamped-clamped boundary condition. The electro-magneto-mechanical bending results are obtained to show that every displacement, rotation and electromagnetic potentials how change with changes of initial electromagnetic potentials and mechanical loads along longitudinal and circumferential directions.