• Title/Summary/Keyword: Displacement speed

Search Result 821, Processing Time 0.027 seconds

Evaluation of Uplift Forces Acting on Fastening Systems at the Bridge Deck End Considering Nonlinear Behaviors of the Fastening Systems (체결장치 비선형 거동을 고려한 교량 단부에서의 체결장치 압상력 평가)

  • Yang, Sin Chu;Kim, Hak Hyung;Kong, Jung Sik
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.521-528
    • /
    • 2017
  • In this study, vertical loading tests were conducted to investigate the nonlinear behaviors of the fastening systems that have generally been used in the concrete track of domestic railway lines. Nonlinear load-displacement curve models were derived based on the test results. The uplift forces generated in the fastening systems were evaluated by applying the derived nonlinear models as well as the existing linear models. The influence of the factors on the maximum uplift force of the fastening system was analyzed through a parameter study on the distance between neighboring sleepers, the horizontal distance between the center of the bearing and the nearest fastening system from the deck end, and the height of the bridge girder. From the evaluation results it is known that, for economical track and bridge design, due to deck end deformation, it is necessary to consider the nonlinear behavior of the fastening system in the calculation of the uplift force of the fastening systems.

Measurement System of Dynamic Liquid Motion using a Laser Doppler Vibrometer and Galvanometer Scanner (액체거동의 비접촉 다점측정을 위한 레이저진동계와 갈바노미터스캐너 계측시스템)

  • Kim, Junhee;Shin, Yoon-Soo;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.227-234
    • /
    • 2018
  • Researches regarding measurement and control of the dynamic behavior of liquid such as sloshing have been actively on undertaken in various engineering fields. Liquid vibration is being measured in the study of tuned liquid dampers(TLDs), which attenuates wind motion of buildings even in building structures. To overcome the limitations of existing wave height measurement sensors, a method of measuring liquid vibration in a TLD using a laser Doppler vibrometer(LDV) and galvanometer scanner is proposed in this paper: the principle of measuring speed and displacement is discussed; a system of multi-point measurement with a single point of LDV according to the operating principles of the galvanometer scanner is established. 4-point liquid vibration on the TLD is measured, and the time domain data of each point is compared with the conventional video sensing data. It was confirmed that the waveform is transformed into the traveling wave and the standing wave. In addition, the data with measurement delay are cross-correlated to perform singular value decomposition. The natural frequencies and mode shapes are compared using theoretical and video sensing results.

A Comparison Study on the Design of Dynamic Response appears on Bridge as operation of Light Railway Train (한국형 경량 전철 주행시 동적 응답 처리의 설계 기준 비교 연구)

  • Yeon, sang-ho;Kang, sung-won
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.792-795
    • /
    • 2008
  • AGT system is a kind of light railway train. AGT system use of concrete track and rubber tire, so it can be reduce the noise and vibration, compare to the normal train system. And, the dynamic responses of normal bridge are influenced by the dynamic characteristics of bridge, the speed of vehicle and the surface roughness of railway. But the AGT system bridge is influenced not only the above facts but also the guiderail unevenness, because, AGT vehicle steered by guiderail. So, in this study, optimized service condition is suggested for the design and operation of AGT system, by the means of experimental study. The experiments are executed for PSC bridge with length of 30m, at the AGT test line in Kyongsan. The test results are compared and investigated according to the prominence. In the test result, the guiderail prominence influenced on the dynamic response of bridge. It shows a increase as compared with no guiderail prominence in the dynamic response value acceleration, displacement, stain.

  • PDF

DEVELOPMENT OF THREE-DIMENSIONAL DYNAMIC ANALYSIS MODEL HIGH SPEED TRAIN-BRIDGE INTERACTION (철도 차량 - 교량 상호작용에 의한 3차원 동적 해석 모델 개발)

  • Dinh, Van Nguyen;Kim, Ki Du;Shim, Jae Soo;Choi, Eun Soo;Songsak, Suthasupradit
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.151-163
    • /
    • 2008
  • A formulation of three-dimensional model of articulated train-b ridge dynamic interaction has been made for the Korean eXpress Train (KTX). Semi-periodic profiles of rail irregularities consisting of elevation, alignment, cross and gauge irregularities have also been proposed using FRA maximum tolerable rail deviations. The effects of rail joints and sleeper step were also included. The resulting system matrices of train and bridge are very spare, and thus, are stored in one-dimensional arrays, yielding a time-efficient solution. A numerical algorithm for computing bridge-train response including an iterative scheme is also formulated. A program simulating train-bridge interaction and solving this problem using the new algorithm is implemented as new modules for the f inite element analysis software named XFINAS. Computed results using the new program are then checked by that of the validated 2-D bridge-train interaction model. This new 3D analysis provides more detailed train responses such as swaying, bouncing, rolling, pitching and yawing accelerations, which are useful inevaluating passenger riding comfort. Train operation safety and derailment could also be directly investigated by relative wheel displacements computed from this program.

Evaluation of Cable Impact Factor by Moving Vehicle Load Analysis in Steel Composite Cable-Stayed Bridges (차량 이동하중 해석에 의한 강합성 사장교 케이블의 충격계수 평가)

  • Park, Yong-Myung;Park, Jae-Bong;Kim, Dong-Hyun;Choi, Byung-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.199-210
    • /
    • 2011
  • The cables in cable-stayed bridges are under high stress and are very sensitive to vibration due to their small section areas compared with other members. Therefore, it is reasonable to evaluate the cable impact factor by taking into account the dynamic effect due to moving-vehicle motion. In this study, the cable impact factors were evaluated via moving-vehicle-load analysis, considering the design parameters, i.e., vehicle weight, cable model, road surface roughness, vehicle speed, longitudinal distance between vehicles. For this purpose, two steel composite cable-stayed bridges with 230- and 540-m main spans were selected. The results of the analysis were then compared with those of the influence line method that is currently being used in design practice. The road surface roughness was randomly generated based on ISO 8608, and the convergence of impact factors according to the number of generated road surfaces was evaluated to improve the reliability of the results. A9-d.o.f. tractor-trailer vehicle was used, and the vehicle motion was derived from Lagrange's equation. 3D finite element models for the selected cable-stayed bridges were constructed with truss elements having equivalent moduli for the cables, and with beam elements for the girders and the pylons. The direct integration method was used for the analysis of the bridge-vehicle interaction, and the analysis was conducted iteratively until the displacement error rate of the bridge was within the specified tolerance. It was acknowledged that the influence line method, which cannot consider the dynamic effect due to moving-vehicle motion, could underestimate the impact factors of the end-cables at the side spans, unlike moving-vehicle-load analysis.

Biomechanical Comparison during Isolation Movement in B-boy and K-pop Dancers (B-boy와 K-pop 댄서 중심으로 한 분리 동작의 생체역학적 비교)

  • Jang, Young Kwan;Hong, Su Yeon;Jang, In Young
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.2
    • /
    • pp.91-99
    • /
    • 2017
  • The purpose of this study was to clarify the differences between the K-pop and B-boy dancers'characteristics based on the biomechanical variables through the isolation movement by independent variable t-test using spss 18.0. As a result, first, the CoM composite displacement of the K-pop dancer was larger than that of the B-boy(p<.05) in phase1 and phase2. Second, in phase2 and phase3, the movement speed of CoM was faster in K-pop dancer than in B-boy(p<.05). Third, in phase1, the planar angle between the body and pelvis was greater in the right planar angle of the K-pop dancer, while in the phase2 and phase3, the left planar angle of the B-boy was larger(p<.05). Fourth, the composite hip joint moments of B-boy were larger than those of K-pop in phase1, However, K-pop dancers showed greater moments in phase2, phase3 and phase4, and ankle joint moments in phase3(p<.05). Thus, even with the same isolation, we found that K-pop and B-boy dancers performed differently.

Experimental Study on Applying a Transition Track System to Improve Track Serviceability in Railway Bridge Deck Ends (철도교량 단부 궤도의 사용성 향상을 위한 횡단궤도시스템 적용에 관한 실험적 연구)

  • Lim, Jongil;Song, Sunok;Choi, Jungyoul;Park, Yonggul
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.3
    • /
    • pp.207-216
    • /
    • 2013
  • The components of concrete track (rail and rail fastening system) in railway bridge deck ends are damaged and deteriorated by track-bridge interaction forces such as uplift forces and compression forces owing to their structural flexural characteristics (bridge end rotation). This had led to demand for alternatives to improve structural safety and serviceability. In this study, the authors aim to develop a transition track to enhance the long term workability and durability of concrete track components in railway bridge deck ends and thereby improve the performance of concrete track. A time-history analysis and a three-dimensional finite element method analysis were performed to consider the train speed and the effect of multiple train loads and the results were compared with the performance requirements and German standard for transition track. Furthermore, two specimens, a normal concrete track and a transition track, were fabricated to evaluate the effects of application of the developed transition track, and static tests were conducted. From the results, the track-bridge interaction force acting on the track components (rail displacement, rail stress, and clip stress) of the railway bridge deck end were significantly reduced with use of the developed transition track compared with the non-transition track specimen.

A Study on the Efficient Tension Estimation of Cables under Ambient Vibration using Minimized Measurement and Signal Processing System (최소화된 계측 및 신호 처리 시스템을 이용한 상시진동 케이블의 효율적인 장력 추정에 관한 연구)

  • Lee, Hyeong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.594-603
    • /
    • 2018
  • Recently, according to the development of measurement techniques, it has become possible to take complicated and time-consuming field measurements in a simple and convenient manner. In this background, this study estimated the tension of cables under ambient vibration using minimized measurement and signal processing. The VBDM using video-only by low-cost equipment was used as a minimized measurement. An estimation of the natural frequency using the mirror frequency concept was also proposed to solve the shortage of frequency band in this case. Furthermore, the FDD method was adopted for a natural frequency estimation in the ambient vibration related to field application. Experimental studies using a cable-stayed bridge model were carried out to examine the properties of the mirror frequency and the applicability of FDD with the proposed minimized system. The results showed that FDD for ambient vibration also works properly in an estimation of the natural frequency using the minimized system. In addition, the mirror frequency concept can allow a high natural frequency estimation even in a distorted signal by low-speed recording, which can overcome the limit of the minimized system. Overall, the proposed minimized system can be effective for the tension estimations of a cable under ambient vibration.

Analytical Behavior of Concrete Derailment Containment Provision(DCP) according to Train Impact Loading (열차 충돌하중에 대한 콘크리트 일탈방호시설물(DCP)의 해석적 거동 검토)

  • Yi, Na-Hyun;Kim, Ji-Hwan;Kang, Yun-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.604-613
    • /
    • 2018
  • In recent years, numerous train derailment accidents caused by deterioration and high speed technology of railways have increased. Guardrails or barriers of railway bridges are installed to restrain and prevent the derailment of the train body level. On the other hand, it can result in a high casualties and secondary damage. Therefore, a Derailment Containment Provision (DCP) within the track at the wheel/bogie level was developed. DCP is designed for rapid installation because it reduces the impact load on the barrier and inertia force on the steep curve to minimize turnover, fall, and trespass on the other side track of the bridge. In this paper, DCP was analyzed using LS-Dyna with a parameter study as the impact loading location and interface contact condition. The contact conditions were analyzed using the Tiebreak contact simulating breakage of material properties and Perfect bond contact assuming fully attached. As a result, the Tiebreak contact behaved similarly with the actual behavior. In addition, the maximum displacement and flexural failure was generated on the interface and DCP center, respectively. The impact analysis was carried out in advance to confirm the DCP design due to the difficulties of performing the actual impact test, and it could change the DCP anchor design as the analysis results.

Rotordynamic Performance Measurements and Predictions of a FCEV Air Compressor Supported on Gas Foil Bearings (가스 포일 베어링으로 지지되는 연료전지 전기자동차용 공기압축기의 회전체동역학적 성능 측정 및 예측)

  • Hwang, Sung Ho;Moon, Chang Gook;Kim, Tae Ho;Lee, Jongsung;Cho, Kyung Seok;Ha, Kyoung-Ku;Lee, Chang Ha
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.44-51
    • /
    • 2019
  • The paper presents the rotordynamic performance measurements and model predictions of a fuel cell electric vehicle (FCEV) air compressor supported on gas foil bearings (GFBs). The rotor has an impeller on one end and a thrust runner on the other end. The front (impeller side) and rear (thrust side) gas foil journal bearings (GFJBs) are located between the impeller and thrust runner to support the radial loads, and a pair of gas foil thrust bearings are located on both sides of the thrust runner to support the axial loads. The test GFJBs have a partial arc shim foil installed between the top foil and bump strip layers to enhance hydrodynamic pressure generation. During the rotordynamic performance tests, two sets of orthogonally installed eddy-current displacement sensors measure the rotor radial motions at the rotor impeller and thrust ends. A series of speed-up and coast-down tests to 100k rpm demonstrates the dominant synchronous (1X) rotor responses to imbalance masses without noticeable subsynchronous motions, which indicates a rotordynamically stable rotor-GFB system. Finite element analysis of the rotor determines the rotor free-free (bending) natural modes and frequencies well beyond the maximum rotating frequency. The predicted damped natural frequencies and damping ratios of the rotor-GFB system reveal rotordynamic stability over the speeds of interest. The imbalance response predictions show that the predicted critical speeds and rotor amplitudes strongly agree with the test measurements, thus validating the developed rotordynamic model.