• Title/Summary/Keyword: Displacement speed

Search Result 821, Processing Time 0.025 seconds

A study of the sinking speed of longlines influenced by bait properties and anchor weights (연승의 침강속도에 영향을 미치는 미끼의 특성과 앵커 무게에 관한 연구)

  • Lee, Ji-Hoon;Lee, Chun-Woo;Karlsen, Ludvig
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.3
    • /
    • pp.214-222
    • /
    • 2010
  • The paper presents investigations on to which degree the sinking speed of longlines is influenced by type of bait, bait sinking orientations and anchor weights. The main aim of this study is to obtain further insight in the ocean current displacement phenomena in demersal longlining. The sinking speed is one of the main factors deciding the current displacement. In an ongoing project, sinking speed experiments with longlines with 6 kg and 10 kg anchor weights have been carried out in the Trondheim fjord. The longlines used in the first experiments were rigged without bait and hook. The results of these experiments with two different anchor weights have revealed only a slight difference in the sinking speed, except for the part near to the anchors, even though the sinking speed of longlines in general is supposed to be much influenced by the anchor weights. The reason for the obtained result is supposed to be that the experiments have been carried out at relative shallow waters. Further studies have included bait sinking experiments in the flume tank. The experiments showed that the drag coefficient of "fillet type (flat)" bait varied from 0.763 to 1.735, while it for "elliptic type" bait varied from 0.62 to 1.483. Other activities have included calculation of the sinking speed of longlines as a function of the established resistance coefficients of bait of various shape and size for commercial longlining. The calculated sinking speed of a longline with the fillet type bait was found to be 12.4 to 16.5% lower than for a longline without bait.

Dynamic Responses in Roadbed of Concrete Track System Subjected to Increasing Train Speed (증속에 따른 콘크리트 궤도 노반의 응답 특성)

  • Jung, Young-Hoon;Hong, Jin-Hui;Choi, Chan-Yong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.853-860
    • /
    • 2011
  • The societal interest on a faster transportation demands an increase of the train speed over the current operation speed of 350 km/h. However, the dynamic response in the roadbed of concrete track system subjected to the train speed ranging between 300 to 500 km/h has been systematically investigated. Herein, a series of the 2-dimensional numerical simulations using various train speeds were performed. A single wheel was modeled by the rigid body. The rail was attached to the sleepers via linear springs in parallel. The results show that the vertical displacement at the rail and track concrete layer exponentially increases when the train speed increases over 400 km/h. This conclusion implies an existence of the critical train velocity at which the displacement of the track system dramatically increases.

  • PDF

Soil and Slab Track Interaction (지반과 슬래브궤도의 상호작용)

  • Kang, Bo-Soon;Hwang, Seong-Chun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.334-339
    • /
    • 2002
  • In this report, numerical investigations have demonstrated, that the displacement underneath a moving loading reach a maximum value, if the speed of the load is equal to propagation velocity of the maximum wave. The load speed for which the maximum displacement occurs is called critical speed. The critical speed divides the velocities in a subcritical and a super-critical region. By means of calculations the dynamic behaviour of the slab track-soil is investigated. For concrete slab track dynamic wheel load are given in dependence of relevant excitation mechanismen and speed of the train. These loads can be used for the dimensioning of the track as well as for prognosis of the vibrations at the track and the surrounding soil.

  • PDF

Soil and Track Interaction under Railway Loads (열차하중에 대한 지반-제도의 상호작용)

  • Kang Bo-Soon
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.2
    • /
    • pp.116-121
    • /
    • 2005
  • In this report, numerical investigations have demonstrated, that the displacement underneath a moving loading reach a maximum value, if the speed of the load is equal to propagation velocity of the maximum wave. The load speed for which the maximum displacement occurs is called critical speed. The critical speed divides the velocities in a subcritical and a super-critical region. By means of calculations the dynamic behaviour of the slab track-soil is investigated. For concrete slab track dynamic wheel load are given in dependence of relevant excitation mechanismen and speed of the train. These loads can be used for the dimensioning of the track as well as far the prognosis of the vibrations at the track and the surrounding soil.

Numerical Investigation on Vibrations due to Railway Loads on Slab Tacks (슬래브 궤도에서 열차하중으로 인한 진동문제의 수치 해석적 연구)

  • Kang Bo-Soon
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.91-96
    • /
    • 2003
  • In this report, numerical investigations have demonstrated, that the displacement underneath a moving loa야ng reach a maximum value, if the speed of the load is equal to propagation velocity of the maximum wave. The load speed for which the maximum displacement occurs is called critical speed. The critical speed divides the velocities in a subcritical and a super-critical region. By means of calculations the dynamic behaviour of the slab track-soil is investigated. For concrete slab track dynamic wheel load are given in dependence of relevant excitation mechanism and speed of the train. These loads can be used for the dimensioning of the track as well as for the prognosis of the vibrations at the track and the surrounding soil.

  • PDF

Performance Improvement of a High Speed Planing Boat by a Stern Wedge

  • Yang, Seung-Il;Kim, Seong-Hwan
    • 한국기계연구소 소보
    • /
    • s.13
    • /
    • pp.87-98
    • /
    • 1984
  • An experimental study carried out to predict the performance characteristics of a high speed planing boat at the two displacements whose hull form shows hard chines form transom to bow. In the resistance test the planing hull model was porpoising at and above 30 knots for both displacements of 30 tons and 24 tons. A small stern wedge was newly designed and attached across hull bottom. The planing hull model with the stern sedge did not show any porpoising up to the speed of 45 knots for both displacements and it analysed results shows the improvement of resistance performance and planing performance comparing with those of original hull form; i.e. for displacement of 30 tons the effective power and trim angle were reduced by 18.9% and 5.71 degrees at the speed of 28 knots, and for the displacement of 24 tons the effective power and trim angle were reduced by 23.63% and 4.37 degrees at the speed of 28 knots, respectively.

  • PDF

Systematic Study on the Hull Form Design and the Resistance Predict Displacement Type Super High - Speed Ships (배수량형 초고속선의 선형설계 및 저항특성 추정을 위한 체계적 연구)

  • Min, Keh-Sik;Kang, Seon-Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.32-47
    • /
    • 1996
  • Systematic theoretical arm experimental studies have been performed to establish the methods of the hull form design, the optimum dimension selection and the resistance estimation for the displacement type super high-speed ships. In this study, theoretical hull form design method of the displacement type super high-speed ships has been developed first by the minimum resistance theory and the sectionally-varying hull form equation. Utilizing the established hull form design method, sixty(60) series hull forms have been prepared according to the systematic variations of the important design variables, and model tests were conducted for the sixty(60) series ship models. Finally, regression analyses have been performed for the results of model tests. It is considered that this is the first systematic and multi-purpose study in the world for the super high-speed ships. The study has been completed very successfully. The prepared computer program is now being actively utilized as an efficient tool for the design of the displacement type super high-speed ships.

  • PDF

Field monitoring of the train-induced hanger vibration in a high-speed railway steel arch bridge

  • Ding, Youliang;An, Yonghui;Wang, Chao
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.1107-1127
    • /
    • 2016
  • Studies on dynamic characteristics of the hanger vibration using field monitoring data are important for the design and evaluation of high-speed railway truss arch bridges. This paper presents an analysis of the hanger's dynamic displacement responses based on field monitoring of Dashengguan Yangtze River Bridge, which is a high-speed railway truss arch bridge with the longest span throughout the world. The three vibration parameters, i.e., dynamic displacement amplitude, dynamic load factor and vibration amplitude, are selected to investigate the hanger's vibration characteristics in each railway load case including the probability statistical characteristics and coupled vibration characteristics. The influences of carriageway and carriage number on the hanger's vibration characteristics are further investigated. The results indicate that: (1) All the eight railway load cases can be successfully identified according to the relationship of responses from strain sensors and accelerometers in the structural health monitoring system. (2) The hanger's three vibration parameters in each load case in the longitudinal and transverse directions have obvious probabilistic characteristics. However, they fall into different distribution functions. (3) There is good correlation between the hanger's longitudinal/transverse dynamic displacement and the main girder's transverse dynamic displacement in each load case, and their relationships are shown in the hysteresis curves. (4) Influences of the carriageway and carriage number on the hanger's three parameters are different in both longitudinal and transverse directions; while the influence on any of the three parameters presents an obvious statistical trend. The present paper lays a good foundation for the further analysis of train-induced hanger vibration and control.

A Cylindrical Spindle Displacement Sensor and its Application on High Speed Milling Machine (원통형 주축 변위 센서를 이용한 고속 밀링 가공 상태 감시)

  • Kim, Il-Hae;Jang, Dong-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.108-114
    • /
    • 2007
  • A new cutting force estimating approach and machining state monitoring examples are presented which uses a cylindrical displacement sensor built into the spindle. To identify the tool-spindle system dynamics with frequency up to 2 kHz, a home-built electro-magnetic exciter is used. The result is used to build an algorithm to extract the dynamic cutting force signal from the spindle error motion; because the built-in spindle sensor signal contains both spindle-tool dynamics and tool-workpiece interactions. This sensor is very sensitive and can measure broadband signal without affecting the system dynamics. The main characteristic is that it is designed so that the measurement is irrelevant to the geometric errors by covering the entire circumferential area between the target and sensor. It is also very simple to be installed. Usually the spindle front cover part is copied and replaced with a new one with this sensor added. It gives valuable information about the operating condition of the spindle at any time. It can be used to monitor cutting force and chatter vibration, to predict roughness and to compensate the form error by overriding spindle speed or feed rate. This approach is particularly useful in monitoring a high speed machining process.

A Study of Surface Roughness Prediction using Spindle Displacement (주축변위를 이용한 표면품위 예측에 관한 연구)

  • Chang H.K.;Jang D.Y.;Han D.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.15-16
    • /
    • 2006
  • In-process surface roughness prediction is studied in this research. To implement in-process prediction, spindle displacement is introduced. Machined surface's roughness is assumed to be expressed in terms of spindle displacement. In-process measurement of spindle displacement is conducted using CCDS (cylindrical capacitive displacement sensor). Two prediction models are developed. One is simple linear model between measured surface roughness and values by spindle displacement. The other is multiple regression model including machining parameters like spindle speed, fee rate and radial depth of cut. Relation between machined surface roughness and roughness by spindle displacement are verified.

  • PDF