• 제목/요약/키워드: Displacement sensitive

검색결과 220건 처리시간 0.025초

In situ Stress Measurements with Submonolayer Sensitivity As a Probe of Coherent-to-incoherent Matching at an Interface in Ultrathin Magnetic Films

  • Jeong, Jong-Ryul;Kim, Young-Seok;Shin, Sung-Chul
    • Journal of Magnetics
    • /
    • 제7권4호
    • /
    • pp.151-155
    • /
    • 2002
  • In situ stress changes at interfaces of ultrathin magnetic films were measured by means of a non-contact optical fiber bundle displacement detector. A bending of the substrate due to stress of a deposited film was detected in cantilever geometry. The highest sensitivity of 134 mV/$\mu$m for the displacement detector was realized with a help of computer simulation. The detector was applied to in situ stress measurements of Co/Pt and Ni/Pd magnetic multilayer films prepared on the glass substrates by dc magnetron sputtering. The detector turned out to have a submonolayer sensitivity that enables to observe coherent-to-incoherent transition in these mismatched multilayers and even detect the stress changes within the monoatomic coverage. This highly sensitive detector paves new way to probe the stress relaxation at an interface in ultrathin films.

Fiber element-based nonlinear analysis of concrete bridge piers with consideration of permanent displacement

  • Ansari, Mokhtar;Daneshjoo, Farhad;Safiey, Amir;Hamzehkolaei, Naser Safaeian;Sorkhou, Maryam
    • Structural Engineering and Mechanics
    • /
    • 제69권3호
    • /
    • pp.243-255
    • /
    • 2019
  • Utilization of fiber beam-column element has gained considerable attention in recent years due mainly to its ability to model distributed plasticity over the length of the element through a number of integration points. However, the relatively high sensitivity of the method to modeling parameters as well as material behavior models can pose a significant challenge. Residual drift is one of the seismic demands which is highly sensitive to modeling parameters and material behavior models. Permanent deformations play a prominent role in the post-earthquake evaluation of serviceability of bridges affected by a near-fault ground shaking. In this research, the influence of distributed plasticity modeling parameters using both force-based and displacement-based fiber elements in the prediction of internal forces obtained from the nonlinear static analysis is studied. Having chosen suitable type and size of elements and number of integration points, the authors take the next step by investigating the influence of material behavioral model employed for the prediction of permanent deformations in the nonlinear dynamic analysis. The result shows that the choice of element type and size, number of integration points, modification of cyclic concrete behavior model and reloading strain of concrete significantly influence the fidelity of fiber element method for the prediction of permanent deformations.

Evaluation of the radiation damage effect on mechanical properties in Tehran research reactor (TRR) clad

  • Amirkhani, Mohamad Amin;Khoshahval, Farrokh
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2975-2981
    • /
    • 2020
  • Radiation damage is one of the aging important causes in nuclear reactors. Radiation damage causes changes in material properties. In this study, this effect has been evaluated and analyzed on the clad of the Tehran research reactor (TRR). A grade 6061 aluminum is used as a clad in the TRR. The MCNPX code is used to designate the most sensitive location of the reactor and calculate neutron flux distribution. Then, a software using FORTRAN language programming is developed to process the particle track (PTRAC) output file of the MCNPX code. The SRIM code is used here to calculate the rate of displacement per atom. Moreover, the SPECOMP and SPECTER codes are also applied to estimate the displacement rate and compared with the results attained using the SRIM code. The rate of displacement per atom by the SPECTER and SRIM codes have been obtained 2.54 × 10-7 dpa/s and 2.44 × 10-7 dpa/s (QD method), respectively. Also, the mechanical properties have been evaluated using the RCC-MRx code and have been compared with experimental results. Finally, the change in the matter specification has been analyzed as a function of time.

Effect of water content on near-pile silt deformation during pile driving using PIV technology

  • Jiang, Tong;Wang, Lijin;Zhang, Junran;Jia, Hang;Pan, Jishun
    • Geomechanics and Engineering
    • /
    • 제23권2호
    • /
    • pp.139-149
    • /
    • 2020
  • Piles are widely used in structural foundations of engineering projects. However, the deformation of the soil around the pile caused by driving process has an adverse effect on adjacent existing underground buildings. Many previous studies have addressed related problems in sand and saturated clay. Nevertheless, the failure mechanism of pile driving in unsaturated soil remains scarcely reported, and this issue needs to be studied. In this study, a modeling test system based on particle image velocimetry (PIV) was developed for studying deformation characteristics of pile driving in unsaturated silt with different water contents. Meanwhile, a series of direct shear tests and soil-water characteristic curve (SWCC) tests also were conducted. The test results show that the displacement field shows an apparent squeezing effect under the pile end. The installation pressure and displacement field characteristics are sensitive to the water content. The installation pressure is the largest and the total displacement field is the smallest, for specimens compacted at water content of 11.5%. These observations can be reasonably interpreted according to the relevant unsaturated silt theory derived from SWCC tests and direct shear tests. The variation characteristics of the soil displacement field reflect the macroscopic mechanical properties of the soil around the pile.

부이 특성에 따른 궤도 차량 동적 거동 (Dynamic Analysis of Tracked Vehicle by Buoy Characteristics)

  • 김형우;민천홍;이창호;홍섭;배대성;오재원
    • Ocean and Polar Research
    • /
    • 제36권4호
    • /
    • pp.495-503
    • /
    • 2014
  • This paper focuses on the dynamic responses of a tracked vehicle crawling on extremely cohesive soft soil, each side of which is composed of two parallel tracks. The tracked vehicle consisted of 2 bodies. One body is the tracked vehicle body, which is assumed to be a rigid body with 6 DOFs. The other body is the buoy body. The two bodies are connected by a revolute joint. In order to evaluate the travelling performance of a 7 DOFs vehicle, a dynamic analysis program for the tracked vehicle was developed using Newmark's method and the incremental-iterative method. The effects of road wheels on the track and soil are not taken into account. A terra-mechanics model of extremely cohesive soft soil is implemented in form of relationships: normal pressure to sinkage, shear resistance to shear displacement, and dynamic sinkage to shear displacement. Pressure-sinkage relationship and shear displacement-stress relationship should represent the non-linear characteristics of extremely soft soil. Especially, since the shear resistance of soft soil is very sensitive to shear displacement, spatial distribution of shear displacement occurring at the contact area of the tracks should be calculated precisely. The proposed program is developed in FORTRAN.

Using an appropriate rotation-based criterion to account for torsional irregularity in reinforced concrete buildings

  • Akshara S P;M Abdul Akbar;T M Madhavan Pillai;Rakesh Pasunuti;Renil Sabhadiya
    • Earthquakes and Structures
    • /
    • 제26권5호
    • /
    • pp.349-361
    • /
    • 2024
  • Excessive torsional behaviour is one of the major reasons for failure of buildings, as inferred from past earthquakes. Numerous seismic codes across the world specify a displacement-based or drift-based criterion for classifying buildings as torsionally irregular. In recent years, quite a few researchers have pointed out some of the inherent deficiencies associated with the current codal guidelines on torsional irregularity. This short communication paper aims to envisage the need for a revision of the displacement-based guidelines on torsional irregularity, and further highlight the appropriateness of a rotation-based criterion. A set of 6 reinforced concrete building models with asymmetric shear walls are analysed using ETABS v18.0.2, by varying the number of stories from 1 to 9, and the torsional irregularity coefficient of various stories is calculated using the displacement-based formula. Since rotation about the vertical axis is a direct indication of the twist experienced by a building, the calculated torsional irregularity coefficients of all stories are compared with the corresponding floor rotations. The conflicting results obtained for the torsional irregularity coefficients are projected through five categories, namely mismatch with floor rotations, inconsistency in trend, lack of clarity in incorporation of negative values, sensitivity to low values of displacement and error conceived in the mathematical formulation. The findings indicate that the irregularity coefficient does not accurately represent the torsional behaviour of buildings in a realistic sense. The Indian seismic code-based values of 1.2 and 1.4, which are used to characterize buildings as torsionally irregular are observed to be highly sensitive to the numerical values of displacements, rather than the actual degree of rotation. The study thus emphasizes the revision of current guidelines based on a more relevant rotation-based or eccentricity-based approach.

자이로콤파스 추종계통의 최적조정 (Parameter Optimization of the Marine Gyrocompass Follow-up System)

  • 이상집
    • 한국항해학회지
    • /
    • 제5권2호
    • /
    • pp.49-58
    • /
    • 1981
  • One of the main purposes of the marine gyrocompass follow-up system is to preserve the sensitive part from the wandering error due to the frictional or torsional torque around the vertical axis. This error can be diminished through the rapid follow-up action, which minimizes the relative azimuthal angular displacement between the sensitive and follow-up parts and shortens the duration of the same displacement. But an excessive rapidity of the follow-up action would result in a sustained oscillation to the system. Therefore, to design a new type of the follow-up system, the theoretical annlysis of the problems concerned should be studied systematically by introducing the control theory. This paper suggest a concrete procedure for the optimal adjustment of the gyrocompass follow-up system, utilizing the mathematic model and the stability informations formerly investiaged by the author. For theoptimal determination of the adjustable paramfter K, the performance index(P.I.), ITSE(Intergral of the Time multiplied by the Squared Error) is proposed, namely, P.I. = $\int_{0}^{\infty} t \cdot e^{2}(t)dt$ where t is time and e(t) means control error. Then, the optimal parameter minimizing the performance index is calculated by means of Parseval's theorem and numerical computation, and the validity of the obtained optimal value of the parameter Ka is examined and confirmed through the simulations and experiments. By using, the proposed method, the optimal adjustment can be performed deterministically. But, this can not be expected in the conventional frequency domain analysis. While the Mps of the original system vary to the extent of from 0.98 to 46.27, Mp of the optimal system is evaluated as 1.1 which satisfies the generally accepted frequency domain specification.

  • PDF

마이크로 머시닝으로 제작한 기계적 가이드를 갖는 정전용량 선형 인코더 (Micro-Machined Capacitive Linear Encoder with a Mechanical Guide)

  • 강대실;문원규
    • 센서학회지
    • /
    • 제21권6호
    • /
    • pp.440-445
    • /
    • 2012
  • Contact-type Linear Encoder-like Capacitive Displacement Sensor (CLECDiS) is a novel displacement sensor which has wide measurable range with high resolution. The sensor, however, is very sensitive to relative rotational alignment between stator and mover of the sensor as well as its displacement. In addition to, there can be some disturbances in the relative rotational alignment, so some noises occur in the sensor's output signal by the disturbances. This negative effect of the high sensitivity may become larger as increasing sensitivity. Therefore, this negative effect of the high sensitivity has to be compensated and reduced to achieve nanometer resolution of the sensor. In this study, a new type capacitive linear encoder with a mechanical guide is presented to reduce the relative rotational alignment problem. The presented method is not only to reduce the alignment problem, but also to assemble the sensor to the stage conveniently. The method is based on a new type CLECDiS that has mechanical guide autonomously. In the presented sensor, when the device is fabricated by micro-machining, the guide-rail is also fabricated on the surface of the sensor. By the direct fabrication of the guide-rail with high precision micro-machining, errors of the guide-rail can be reduced significantly. In addition, a manual yaw alignment is not required to obtain large magnitude of the output signal after the assembly of the sensor and the stage. The sensor movement is going to follow the guide-rail automatically. The prototype sensor was fabricated using the presented method, and we verify the feasibility experimentally.

전자기 제어 밸브를 위한 벨로우즈의 기계적 거동에 관한 연구 (Analysis of the Mechanical Behavior of Bellows for Electromagnetic Control Valve)

  • 손인서;황선;신동길
    • 한국산학기술학회논문지
    • /
    • 제17권3호
    • /
    • pp.432-437
    • /
    • 2016
  • 본 연구는 금속 주름관, 내부 스프링, 금속마개 등으로 구성된 소형 벨로우즈 세트의 거동에 대하여 연구하였다. 벨로우즈는 자동차용 에어컨의 제어를 위한 전자기제어밸브의 핵심 부품으로써 기계적 하중과 외부 압력에 대하여 민감하고 정확하게 작동하여야 한다. 벨로우즈 설계 인자 도출을 위하여, 소형 인장시험기를 이용하여 벨로우즈 내부 스프링의 스프링 상수를 측정하고, 벨로우즈 세트의 하중-변위 선도를 측정하였다. 내부 스프링의 하중-변위 관계는 선형관계를 나타내었다. 벨로우즈 세트의 하중-변위 관계는 변위가 작을 때는 낮은 기울기를 가지고 하중이 증가하다가 이후 선형으로 증가하는 특성을 나타내었다. 실측 결과를 바탕으로 유한요소해석을 수행하여 외부 주름관의 유효 물성을 도출하고 유한요소 모델링을 확보하였다. 원통형의 형상을 고려하여 축대칭 모델을 적용하였으며, 주름관은 쉘 요소를 적용하였다. 확보한 모델을 활용하여 냉매 압력에 따른 벨로우즈의 거동에 대한 연구를 수행하였다.

변위전류 측정기법에 의한 기수계면의 지방산 단분자막의 동적 거동에 관한연구 (A Study on the Dynamics Behavior of Fatty Acid Monolayers at the Air-Water Interface by Current-Measuring Technique)

  • 김동관;이순형;강용철;이상일;김창석;백순기;이경섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1699-1701
    • /
    • 2000
  • The dynamic behavior of fatty acid monolayers at the air-water interface was investigated using a displacement current-measuring technique coupled with the so-called Langmuir film technique and also the dipole moment of the acids was determined. The displacement current flowing though a short circuit wan generated only when induced charges on an electrode flowing though suspended in air was changed by monolayer compression. The displacement current measurement was found to be a very sensitive method used for a better understanding of the relationship between the structure and function of the monolayers placed on the water surface and it was also found to be a very useful method for detecting the dynamic motion of molecules in the entire range from the so-called gaseous state to solid state at the same time. In the paper investigate fatty monolayer dynamic state and electric property character. As result. Displacement current generate higher nearly distance electrodel and water surface. Also, Molecule behavior was found pocess active higher thermal.

  • PDF