• Title/Summary/Keyword: Displacement angle

Search Result 882, Processing Time 0.03 seconds

Shear response estimate for squat reinforced concrete walls via a single panel model

  • Massone, Leonardo M.;Ulloa, Marco A.
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.647-665
    • /
    • 2014
  • Squat reinforced concrete walls require enough shear strength in order to promote flexural yielding, which creates the need for designers of an accurate method for strength prediction. In many cases, especially for existing buildings, strength estimates might be insufficient when more accurate analyses are needed, such as pushover analysis. In this case, estimates of load versus displacement are required for building modeling. A model is developed that predicts the shear load versus shear deformation of squat reinforced concrete walls by means of a panel formulation. In order to provide a simple, design-oriented tool, the formulation considers the wall as a single element, which presents an average strain and stress field for the entire wall. Simple material constitutive laws for concrete and steel are used. The developed models can be divided into two categories: (i) rotating-angle and (ii) fixed-angle models. In the first case, the principal stress/strain direction rotates for each drift increment. This situation is addressed by prescribing the average normal strain of the panel. The formation of a crack, which can be interpreted as a fixed principal strain direction is imposed on the second formulation via calibration of the principal stress/strain direction obtained from the rotating-angle model at a cracking stage. Two alternatives are selected for the cracking point: fcr and 0.5fcr (post-peak). In terms of shear capacity, the model results are compared with an experimental database indicating that the fixed-angle models yield good results. The overall response (load-displacement) is also reasonable well predicted for specimens with diagonal compression failure.

Vibration of antisymmetric angle-ply laminated plates under higher order shear theory

  • Javed, Saira;Viswanathan, K.K.;Aziz, Z.A.;Karthik, K.;Lee, J.H.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1281-1299
    • /
    • 2016
  • This paper deals with the analysis of vibration of antisymmetric angle-ply plates using spline method for higher order shear theory. Free vibration of laminated plates is addressed to show the capability of the present method in the vicinity of higher order shear deformation theory and simply supported edges of plates. The coupled differential equations are obtained in terms displacement and rotational functions. These displacement and rotational functions are approximated using cubic and quantic spline. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The antisymmetric angle-ply fiber orientation are taken as design variables. Numerical results enable us to examine the frequencies for various geometric and material parameters and accuracy and effectiveness of the proposed method is also verified by comparative study.

Research on Grid Side Power Factor of Unity Compensation Method for Matrix Converters

  • Xia, Yihui;Zhang, Xiaofeng;Ye, Zhihao;Qiao, Mingzhong
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1380-1392
    • /
    • 2019
  • Input filters are very important to matrix converters (MCs). They are used to improve grid side current waveform quality and to reduce the input voltage distortion supplied to the grid side. Due to the effects of the input filter and the output power, the grid side power factor (PF) is not at unity when the input power factor angle is zero. In this paper, the displacement angle between the grid side phase current and the phase voltage affected by the input filter parameters and output power is analyzed. Based on this, a new grid side PF unity compensation method implemented in the indirect space vector pulse width modulation (ISVPWM) method is presented, which has a larger compensation angle than the traditional compensation method, showing a higher grid side PF at unity in a wide output power range. Simulation and experimental results verify that the analysis of the displacement angle between the grid side phase current and the phase voltage affected by the input filter and output power is right and that the proposed compensation method has a better grid side PF at unity.

Assessment of Lumbar Spine Kinematics by Posterior-to-Anterior Mobilization

  • Oh, Kang O;Lee, Sang-Yeol
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.4
    • /
    • pp.450-456
    • /
    • 2021
  • Objective: Studies confirming the lumber spine kinematics of direct or indirect segmental mobility under the application of joint mobilization, which induces passive force on the spine, are insufficient.Therefore, this study aims to obtain the underlying clinical data by identifying direct or indirect segmental mobility produced by Maitland's PA mobilization technique. Design: Randomized controlled trial design. Methods: Thirty subjects with no back pain participated in this study. X-ray testing equipment (SIG-40-525, Ecoray Inc., Korea) was used to verify the segmented movement of their lumbar. Joint mobilization was performed by physiotherapists with more than 10 years of experience in prescription therapy, and radiography was performed once without PA joint mobilization and once without the mobilization for comparing the lumbar vertebrae before and after the mobilization. The radiographs taken were analyzed using the picture archiving and communication system (PACS) program to measure the spinal displacement, intervertebral height, intervertebral angle, and lumbar lordosis angle. Results: Significant differences were observed in the lumbar displacement, intervertebral angle, and lumbar lordosis angle in all lumbar vertebrae before and after the mobilization. The intervertebral height indicated significant differences in all ventral vertebrae and only in L3-L4 and L4-L5 in dorsal vertebrae. Conclusions: This study suggests that the segmental mobility produced through indirect approaches plays an important role in inducing therapeutic effects in patients with back pain.

Effects of Specimen Geometry on Stress Distribution in Sandwich Specimen Under Combined Loads (복합하중을 받는 샌드위치 시편의 응력분포에 미치는 시편 형상의 영향)

  • Park, Su-Kyeong;Hong, Sung-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1587-1592
    • /
    • 2010
  • The effects of specimen geometry and loading conditions on the stress distribution in a sandwich specimen under combined loads are investigated by elastic finite element analysis. A commercial software NASTRAN is used in plain-strain two-dimensional finite element analysis of sandwich specimens; the analysis was performed for three different specimen shape factors and four different combined displacement conditions. The results of computational analysis suggest that the effect of the combined displacement angle, which is defined as the ratio of the shear displacement to the normal displacement, on the size of the non-homogeneous stress distribution is observed only in the case of the shear stress and von Mises stress. Also as the combined displacement angle increases, the size of the nonhomogeneous stress distribution decreases in the case of the shear stress and increases in the case of the von Mises stress. In addition, as the specimen shape factor, which is defined as the ratio of the specimen length to the height, increases, the size of the non-homogeneous stress distribution under combined displacement conditions decreases significantly.

Displacement Evaluation of Cable Supported Bridges Using Inclinometers (경사계를 이용한 케이블교량의 변위 산정)

  • Kong, Min Joon;Yun, Jung Hyun;Kang, Seong In;Gil, Heungbae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.297-308
    • /
    • 2023
  • Displacement of structures is the most important parameter for safety and performance assessment and is measured to use for diagnosis and maintenance of bridges. Usually LVDT, Laser and GNSS are used for displacement measurement but these measurement instruments have problems in terms of field condition and cost. Therefore, in this study, displacements were evaluated using rotational angle measured by inclinometers and the proposed algorithm was experimentally verified. As the result, vertical displacements of cable supported bridges with traffic and temperature load were properly evaluated through the proposed algorithm. Therefore it is considered that the proposed algorithm can be used for displacement measurement by vehicle load test and long term displacement monitoring.

Kinematical Analysis on the Head Hitting Motion Based on Weight Change of Bamboo Swords (죽도 무게변화에 따른 검도 머리치기 동작의 운동학적 분석)

  • Chung, Nam-Ju;Kim, Jae-Pil;Ku, Jong-Mo
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • This study was performed to investigate the kinematic factors on the head hitting motion based on weight change of bamboo swords in kumdo. The kinematic factors, needed time per phase, COB displacement and velocity, angle(wrist, elbow, shoulder joint, hip joint, knee joint), were analyzed by the 3-D motion analysis method against 6 male middle school athletes. The results were as follows. 1. The needed time of head hitting motion based on weight change of bamboo swords was shorter when weight was heavier. 2. The COB displacement of left/right was bigger when weight was heavier. the displacement of right foot was higher at backswing phase and impact phase when weight was heavier and at impact time when weight was lighter. 3. The COB velocity was faster at impact time when weight was heavier, the velocity of sword tip was fastest for each event with bamboo sword weight of 440 g. 4. The angle of left elbow was smaller at top of backswing and impact when weight was heavier, the angle of left shoulder was bigger when weight was heavier, the right knee angle was biger at start when weight was heavier, at impact when weight was lighter.

The Biomechanical Analysis of the Cuervo Salto Forward Straight Vaults with Twists (도마 몸 펴 쿠에르보 비틀기 동작 분석)

  • Lim, Kyu-Chan
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.143-151
    • /
    • 2005
  • This study was conducted to investigate the technical factors of Cuervo forward straight vaults with single twist, single and half twists, and double twists actually performed by three execellent male gymnasts participated in artistic gymnastics competition of 2003 summer Universiade in Daegu and the 85th National Sports Festival in Cheongju. To accomplish the research goals the Cuervo vaults of three gymnasts were filmed by using three digital camcorders set by 60 Hz, and data were collected through the DLT method of three dimensional cinematography. The kinematic and kinetic variables as each phasic time, CM displacement velocity, release angle inclination angle hip joint angle landing angle, average horse reaction force average moment arm average torque, whoe body's total remote local angular momentum were analyzed, so the following conclusions were reached. Generally to perform the better Cuervo vault, a gymnast should touch down on the board with the great horizontal velocity of the whole body through the fast run-up, and touch down on the horse by decreasing the horizontal displacement of the whole body during the preflight, so raise CM height gradually within a short horse contact time. He should increase the horse reaction force through checking the horizontal velocity of the whole body effectively and the inclination angular displacement of the handstand, if so he can have the large vertical velocity of the whole body. By using the acquired the velocity and the angular momentum of the whole body, he can vault himself higher and twist sufficiently, then he can get better if the body could be tilted by swinging both arms and perform the cat twist with a little flexions at hip joints. According to the above outcomes we can judge that the best athletes is LuBin, the better is YTY, and the next is JSM.

An Analysis on Kinematically Contributing Factors at Impact of Forehand Drive Motion in Squash (스쿼시 포핸드 드라이브 동작의 임팩트시 운동학적 주요요인 분석)

  • Lee, Kyung-Il;Lee, Hee-Kyung
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.29-39
    • /
    • 2007
  • This study were obtained elapsed time phase-by-phases, displacement, user angle, velocity and angular velocity to analyse kinematically contributing factors at impact of forehand drive motion, on targeting three male players. The results of the study were presented as follows; In the forehand drive swing, the elapsed time by phases was a total of .52 seconds: .30 seconds from backswing to impact and .22 seconds from impact to follow-through, Considering the mean change in locations of COM of each(part$\rightarrow$body segment) at impact, racket head, left shoulder, right wrist and left hip, the left-right directions(X-axis) were showm to be each $.61{\pm}.03$, $1.19{\pm}.08$, $.66{\pm}.03$, $.94{\pm}.06$, and $.45{\pm}.03m$. The displacement differences of COM of each body segment were shown to be -.57, -.05, -.33, and .16m. For the vertical direction(Z-axis), the center of mass was lowest at impact and highest at E3. For the displacement of the right wrist on the left hip, the right wrist moved to .82m to the lower direction without change in the locations of the hip from E1 from E2. When the left hip moved .02m from E2 to E3, the right wrist moved .7m in the upper direction. In respect to the velocity of each body segment, the hip and the shoulder joint accelerated and then the wrist followed. Then the right wrists of all the subjects and their racket heads showed maximum speed, and an effective swing was observed. At the angle of each part, the angle of the right wrist was the smallest at the backswing and the largest at the moment of the impact. Then it increased gradually in the follow-through section. In respect of angular velocity for subject A, the hip moved and the largest change occurred. Immediately before the impact, the subject made a swing using his right wrist, his hip, and the shoulder joint, showing the maximum value, which was judged to be effective.

Effects of Taping the Lower Back on the Lumbopelvic Region and Hip Joint Kinematics During Sit-to-Stand

  • Kim, Si-Hyun;Park, Kyue-Nam;Kwon, Oh-Yun;Choi, Houng-Sik
    • Physical Therapy Korea
    • /
    • v.21 no.4
    • /
    • pp.49-55
    • /
    • 2014
  • Excessive lumbar flexion during sit-to-stand (STS) is a risk factor for lower back pain. Postural taping can prevent unwanted flexion of the lumbar spine. This study aimed to demonstrate the effect of taping the lower back on the lumbopelvic region and hip joint kinematics during STS. Sixteen healthy subjects participated. All subjects performed the STS with and without taping of the lower back. A three-dimensional motion analysis system was used to measure the kinematics of the lumbar spine, pelvis, and hip joint during STS. The angle of the peak lumbar flexion, pelvic anterior tilting, and hip flexion and angular displacement of the lumbar spine between starting position and maximal lumbar flexion were collected. Paired t-tests, or Wilcoxon's rank-sum test for non-parametric distribution, were used to assess differences in the measurements with and without taping. A p-value <.05 was taken to indicate a significant difference. Significant differences were observed in the angle of the peak lumbar flexion, pelvic anterior tilting, hip flexion and angular displacement of the lumbar spine (p<.05). Taping was associated with a significant decrease in the angle of peak lumbar flexion and angular displacement of the lumbar spine between the starting position and maximal lumbar spine flexion. In addition, the peak angle of pelvic anterior tilting and hip flexion were significantly increased with taping. The findings of this study suggest that taping the lower back can decrease excessive lumbar flexion, and increase the pelvic anterior tilting and hip flexion motion during STS.