• Title/Summary/Keyword: Displacement Error

Search Result 547, Processing Time 0.028 seconds

Performance Evaluation of a Large-scale MR Damper for Controlling Seismic Responses Using a Real-time Hybrid Test Method (실시간 하이브리드 실험법을 이용한 대형 MR감쇠기의 제진 성능평가)

  • Park, Eun-Churn;Lee, Sung-Kyung;Youn, Kyung-Jo;Chung, Hee-San;Lee, Heon-Jae;Choi, Kang-Min;Moon, Suk-Jun;Jung, Hyung-Jo;Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.131-138
    • /
    • 2008
  • This paper presents real-time hybrid test method of large-scale MR damper applied to a building structure under seismic excitation. The real-time hybrid test using an actuator for the control performance evaluation of a MR damper controlling the response of earthquake-excited building structure is experimentally implemented. In the test, the building structure is used as a numerical part, on which a large-scale MR damper adopted as an experimental part was installed to reduce its response. At first, the force that is acting between a MR damper and building structure is measured from the load cell attached on the actuator system and is fed-back to the computer to control the motion of the actuator. Then, the actuator is so driven that the error between the interface displacement computed from the numerical building structure with the excitations of earthquake and the fed-back interface force and that measured from the actuator. The control efficiency of the MR damper used in this paper is experimentally confirmed by implementing this process of experiment on real-time.

Optimization of Design Parameters of a EPPR Valve Solenoid using Artificial Neural Network (인공 신경회로망을 이용한 전자비례 감압밸브의 솔레노이드 형상 최적화)

  • Yoon, Ju Ho;Nguyen, Minh Nhat;Lee, Hyun Su;Youn, Jang Won;Kim, Dang Ju;Lee, Dong Won;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.34-41
    • /
    • 2016
  • Unlike the commonly used On/Off solenoid, constant attraction force which is independent of plunger displacement is a considerably important characteristic to proportional solenoid of the EPPR Valve. Attraction force uniformity is mainly affected by the internal shape design parameters. Due to a number of shape design parameters, the optimal parameter values are very complex and time consuming to find by trial and error method. Much research has been conducted or are still in progress to find the optimal parameter values by applying various optimization techniques like Genetic Algorithm, Evolution Strategy, Simulated Annealing, or the Taguchi method. In this paper, the design parameters which have primary effects on the attraction force uniformity and the average attraction force are decided by main effects analysis of Design of Experiments. Optimal parameter values are derived using finite-element analysis and a neural network model.

Physical and numerical modelling of the inherent variability of shear strength in soil mechanics

  • Chenari, Reza Jamshidi;Fatahi, Behzad;Ghoreishi, Malahat;Taleb, Ali
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.31-45
    • /
    • 2019
  • In this study the spatial variability of soils is substantiated physically and numerically by using random field theory. Heterogeneous samples are fabricated by combining nine homogeneous soil clusters that are assumed to be elements of an adopted random field. Homogeneous soils are prepared by mixing different percentages of kaolin and bentonite at water contents equivalent to their respective liquid limits. Comprehensive characteristic laboratory tests were carried out before embarking on direct shear experiments to deduce the basic correlations and properties of nine homogeneous soil clusters that serve to reconstitute the heterogeneous samples. The tests consist of Atterberg limits, and Oedometric and unconfined compression tests. The undrained shear strength of nine soil clusters were measured by the unconfined compression test data, and then correlations were made between the water content and the strength and stiffness of soil samples with different consistency limits. The direct shear strength of heterogeneous samples of different stochastic properties was then evaluated by physical and numerical modelling using FISH code programming in finite difference software of $FLAC^{3D}$. The results of the experimental and stochastic numerical analyses were then compared. The deviation of numerical simulations from direct shear load-displacement profiles taken from different sources were discussed, potential sources of error was introduced and elaborated. This study was primarily to explain the mathematical and physical procedures of sample preparation in stochastic soil mechanics. It can be extended to different problems and applications in geotechnical engineering discipline to take in to account the variability of strength and deformation parameters.

Implementation of an Electrode Positioning System to Improve the Accuracy and Reliability of the Secondary Battery Stacking Process (2차 전지 적층 공정의 정확성과 신뢰성 향상을 위한 전극 위치결정 시스템 구현)

  • Lee, June-Hwan
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.219-225
    • /
    • 2021
  • As for the battery package method, a prismatic package method is preferred for stability reasons, but it is rapidly expanding due to the stability verification of a pouch type package. The pouch type using the lamination process has an advantage of high battery energy density because it can reduce space waste, but has a disadvantage of low productivity. Therefore, in this paper, by extracting edge detection algorithm precision, pattern algorithm precision, and motion controller recall rate by improving backlight lighting fixtures to minimize light diffusion, securing standards for stereo camera position relationship displacement monitoring, and securing standards for lens release monitoring. We propose to implement a system that ensures accuracy and reliability in positioning. As a result of the experiment, the proposed system shows an average error range of 0.032mm for edge detection, 0.02mm for pattern algorithm, and 0.014mm for motion controller, thus ensuring the accuracy and reliability of the positioning mechanism.

A study on the correlation of the structural integrity's reduction factors using parametric analysis (매개변수 해석을 이용한 구조물 건전도 저감 영향인자 상관성 연구)

  • La, You-Sung;Park, Min-Soo;Koh, Sungyil;Kim, Chang-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.485-502
    • /
    • 2021
  • In order to evaluate the impact of ground subsidence and superstructures that are inevitably caused by tunnel excavation, a total of seven major influencing factors of surface subsidence and structural soundness reduction were set, and a Parameter Study using numerical analysis was conducted. Stability analysis was performed using scheme of Boscardin and Cording method and the maximum subsidence amount and the angular displacement, and correlation analysis was performed for each major influencing factor. In addition, it was applied that used the mutual behavior of the ground and the structure by parameter analysis in the site of the 𐩒𐩒𐩒 tunnel located in Hwaseong-si, Gyeonggi-do, and the applicability of the site was analyzed. As a result, the error was found to be 1.0%, and it could be used as a basic material for determining the appropriate tunnel route under various conditions when evaluating the stability of the structure according to tunnel excavating at the design stage.

A Study on Inspecting Position Accuracy of DACS Pintle (위치자세제어장치의 핀틀 위치정확도 점검 방안 연구)

  • Tak, Jun Mo
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.57-64
    • /
    • 2021
  • In the study, to minimize the error on guided control of the KV (Kill Vehicle) and to secure the hit-to-kill performance, a position accuracy inspection for the DACS (Divert and Attitude Control System) actuation system was proposed. The accuracy performance of the DACS actuation system is one of the most important factors in the interception of ballistic missiles. In order to validate actuation control accuracy of DACS system, an inspection item was set for position accuracy, and the inspection system was designed for DACS pintle. To measure the absolute position value of the DACS pintle, an external measurement system was developed using laser displacement sensors. The inspection system was designed so that it can be compared with the actuation command in real time. The proposed position accuracy inspection system can be inspected not only in a DACS system but also in missile system level. The position accuracy inspection was performed using the designed inspection system, and analysis of the inspection result.

Numerical response of pile foundations in granular soils subjected to lateral load

  • Adeel, Muhammad B.;Aaqib, Muhammad;Pervaiz, Usman;Rehman, Jawad Ur;Park, Duhee
    • Geomechanics and Engineering
    • /
    • v.28 no.1
    • /
    • pp.11-23
    • /
    • 2022
  • The response of pile foundations under lateral loads are usually analyzed using beam-on-nonlinear-Winkler-foundation (BNWF) model framework employing various forms of empirically derived p-y curves and p-multipliers. In practice, the p-y curve presented by the American Petroleum Institute (API) is most often utilized for piles in granular soils, although its shortcomings are recognized. The objective of this study is to evaluate the performance of the BNWF model and to quantify the error in the estimated pile response compared to a rigorous numerical model. BNWF analyses are performed using three sets of p-y curves to evaluate reliability of the procedure. The BNWF model outputs are compared with results of 3D nonlinear finite element (FE) analysis, which are validated via field load test measurements. The BNWF model using API p-y curve produces higher load-displacement curve and peak bending moment compared with the results of the FE model, because empirical p-y curve overestimates the stiffness and underestimates ultimate resistance up to a depth equivalent to four times the pile diameter. The BNWF model overestimates the peak bending moment by approximately 20-30% using both the API and Reese curves. The p-multipliers are revealed to be sensitive on the p-y curve used as input. These results highlight a need to develop updated p-y curves and p-multipliers for improved prediction of the pile response under lateral loading.

Optimised neural network prediction of interface bond strength for GFRP tendon reinforced cemented soil

  • Zhang, Genbao;Chen, Changfu;Zhang, Yuhao;Zhao, Hongchao;Wang, Yufei;Wang, Xiangyu
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.599-611
    • /
    • 2022
  • Tendon reinforced cemented soil is applied extensively in foundation stabilisation and improvement, especially in areas with soft clay. To solve the deterioration problem led by steel corrosion, the glass fiber-reinforced polymer (GFRP) tendon is introduced to substitute the traditional steel tendon. The interface bond strength between the cemented soil matrix and GFRP tendon demonstrates the outstanding mechanical property of this composite. However, the lack of research between the influence factors and bond strength hinders the application. To evaluate these factors, back propagation neural network (BPNN) is applied to predict the relationship between them and bond strength. Since adjusting BPNN parameters is time-consuming and laborious, the particle swarm optimisation (PSO) algorithm is proposed. This study evaluated the influence of water content, cement content, curing time, and slip distance on the bond performance of GFRP tendon-reinforced cemented soils (GTRCS). The results showed that the ultimate and residual bond strengths were both in positive proportion to cement content and negative to water content. The sample cured for 28 days with 30% water content and 50% cement content had the largest ultimate strength (3879.40 kPa). The PSO-BPNN model was tuned with 3 neurons in the input layer, 10 in the hidden layer, and 1 in the output layer. It showed outstanding performance on a large database comprising 405 testing results. Its higher correlation coefficient (0.908) and lower root-mean-square error (239.11 kPa) were obtained compared to multiple linear regression (MLR) and logistic regression (LR). In addition, a sensitivity analysis was applied to acquire the ranking of the input variables. The results illustrated that the cement content performed the strongest influence on bond strength, followed by the water content and slip displacement.

Automated Extraction of Orthorectified Building Layer from High-Resolution Satellite Images (고해상도 위성영상으로부터 건물 정위 레이어 자동추출)

  • Seunghee Kim;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.339-353
    • /
    • 2023
  • As the availability of high-resolution satellite imagery increases, improvement of positioning accuracy of satellite images is required. The importance of orthorectified images is also increasing, which removes relief displacement and establishes true localization of man-made structures. In this paper, we performed automated extraction of building rooftops and total building areas within original satellite images using the existing building height database. We relocated the rooftop sin their true position and generated an orthorectified building layer. The extracted total building areas were used to blank out building areas and generate true orthographic non-building layer. A final orthorectified image was provided by overlapping the building layer and non-building layer.We tested the proposed method with KOMPSAT-3 and KOMPSAT-3A satellite images and verified the results by overlapping with a digital topographical map. Test results showed that orthorectified building layers were generated with a position error of 0.4m.Through the proposed method, the feasibility of automated true orthoimage generation within dense urban areas was confirmed.

Whole-life wind-induced deflection of insulating glass units

  • Zhiyuan Wang;Junjin Liu;Jianhui Li;Suwen Chen
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.289-302
    • /
    • 2023
  • Insulating glass units (IGUs) have been widely used in buildings in recent years due to their superior thermal insulation performance. However, because of the panel reciprocating motion and fatigue deterioration of sealants under long-term wind loads, many IGUs have the problem of early failure of watertight properties in real usage. This study aimed to propose a statistical method for wind-induced deflection of IGU panels during the whole life service period, for further precise analysis of the accumulated fatigue damage at the sealed part of the edge bond. By the estimation of the wind occurrence regularity based on wind pressure return period, the events of each wind speed interval during the whole life were obtained for the IGUs at 50m height in Beijing, which are in good agreement with the measured data. Also, the wind-induced deflection analysis method of IGUs based on the formula of airspace coefficient was proposed and verified as an improvement of the original stiffness distribution method with the average relative error compared to the test being about 3% or less. Combining the two methods above, the deformation of the outer and inner panes under wind loads during 30 years was precisely calculated, and the deflection and stress state at selected locations were obtained finally. The results show that the compression displacement at the secondary sealant under the maximum wind pressure is close to 0.3mm (strain 2.5%), and the IGUs are in tens of thousands of times the low amplitude tensile-compression cycle and several times to dozens of times the relatively high amplitude tensile-compression cycle environment. The approach proposed in this paper provides a basis for subsequent studies on the durability of IGUs and the wind-resistant behaviors of curtain wall structures.