• Title/Summary/Keyword: Displacement Compatibility Condition

Search Result 28, Processing Time 0.026 seconds

Harmonic seismic waves response of 3D rigid surface foundation on layer soil

  • Messioud, Salah;Sbartai, Badredine;Dias, Daniel
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.109-118
    • /
    • 2019
  • This study, analyses the seismic response for a rigid massless square foundation resting on a viscoelastic soil layer limited by rigid bedrock. The foundation is subjected either to externally applied forces or to obliquely incident seismic body or surface harmonic seismic waves P, SV and SH. A 3-D frequency domain BEM formulation in conjunction with the thin layer method (TLM) is adapted here for the solution of elastodynamic problems and used for obtained the seismic response. The mathematical approach is based on the method of integral equations in the frequency domain using the formalism of Green's functions (Kausel and Peck 1982) for layered soil, the impedance functions are calculated by the compatibility condition. In this study, The key step is the characterization of the soil-foundation interaction with the input motion matrix. For each frequency the impedance matrix connects the applied forces to the resulting displacement, and the input motion matrix connects the displacement vector of the foundation to amplitudes of the free field motion. This approach has been applied to analyze the effect of soil-structure interaction on the seismic response of the foundation resting on a viscoelastic soil layer limited by rigid bedrock.

Liquid boundary effect on free vibration of an annular plate coupled with a liquid

  • Kyeong-Hoon Jeong
    • Coupled systems mechanics
    • /
    • v.12 no.2
    • /
    • pp.127-149
    • /
    • 2023
  • A theoretical method is developed to analyze the free vibration of an elastic annular plate in contact with an ideal liquid. The displacement potential functions of the contained liquid are expressed as a combination of the Bessel functions that satisfy the Laplace equation and the liquid boundary conditions. The compatibility condition along the interface between the annular plate and the contained liquid is taken into account to consider the fluid-structure coupling. The dynamic displacement of the wet annular plate is assumed to be a combination of dry eigenfunctions, allowing for prediction of the natural frequencies using the Rayleigh-Ritz method. The study investigates the effect of radial liquid boundary conditions on the natural frequencies of the wet annular plate, considering four types of liquid bounding: outer container bounded, outer and inner bounded, inner bounded, and radially unbounded. The proposed theoretical method is validated by comparing the predicted wet natural frequencies with those obtained from finite element analysis, showing excellent accuracy. The results indicate that the radial liquid bounding effect on the natural frequencies is negligible for the axisymmetric vibrational mode, but relatively significant for the mode with one nodal diameter (n =1) and no nodal circle (m' = 0). Furthermore, the study reveals that the wet natural frequencies are the largest for the plate with an inner bounded cylinder among the radial liquid boundary cases, regardless of the vibration mode.

Shear Strength Prediction of RC Beams without Stirrup using Transverse Strain Evaluation (전단보강철근이 없는 RC보의 수직변형률 평가를 통한 전단강도 산정)

  • Shin Geun Ok;Rhee Chang Shin;Jeong Jae Pyong;Kim Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.275-278
    • /
    • 2005
  • This paper presents a model for evaluating the contribution by arch action and frame action to shear resistance in shear-critical reinforced concrete beams without stirrup. The rotating angle softened truss model is employed to calculate the shear deformation of the web and the relative axial displacement of the compression and tension chord by the shear flow are also calculated. From this shear compatibility condition in a beam, the shear contribution by the arch action is numerically decoupled. The transverse strain obtained from the proposed model is selected for shear failure criterion. Using the failure criterion, shear strength of RC slender beams without stirrup is predicted.

  • PDF

Stress Intensity Factor for the Cracked Plate Reinforce with a Plate by Seam Welding

  • Kim, O.W.;Park, S.D.;Lee, Y.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.2
    • /
    • pp.18-22
    • /
    • 2001
  • The stress intensity factor has been calculated theoretically for the cracked plate subjected to remote normal stress and reinforced with a plate by symmetric seam welding. The singular integral equation was derived based on displacement compatibility condition between the cracked plate and the reinforcement plate, and solved by means of Erdogan and Gupta's method. The results from the derived equation for stress intensity factor were compared with FEM solutions and seems to be reasonable. The reinforcement effect gets better as welding line is closer to the crack and the stiffness ratio of the cracked plate and the reinforcement plate becomes larger.

  • PDF

A Study on Stress Concentration Phenomena in Cylindrical Structures due to Stractural Incontinuty by Finite Element Method (構造的 不連續에 기인하는 圓筒構造物의 應力集中現象에 관한 有限要素法에 의한 硏究)

  • Kim, Doo-Man;Chung, Sei-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.3 no.2
    • /
    • pp.25-34
    • /
    • 1988
  • The stress concentration phenomena due to the structural incontinuty are studied by finite element method. In this study, a circular cylinder is treated. Under the axial load, the membrance action is dominate and the 24 D.O.F. cylindrical membrane finite element is used. The assembly of this element can successfully represent the original structure geometrically. The internal displacement function is such organized that the inter element compatibility condition is fully satisfied. In this study, the stress concentration factors due to the presence of a hole on the cylinder wall are obtained, and the factors versus the location of the hole is computed and plotted. It is found that the hole effect on the stress concentration disappears beyond the neighboring region of the hole size form the edge of the hole. Those results are useful for practical design in determining the region where the re-inforcing is necessary.

  • PDF

Analysis of Stress Intensity Factor for the Cracked Plate Reinforced with a Sheet by Seam Welding (심용접에 의한 판재로 보강된 균열판의 응력세기계수 해석)

  • 김옥환;박성두;이영호
    • Journal of Welding and Joining
    • /
    • v.16 no.1
    • /
    • pp.63-69
    • /
    • 1998
  • The stress intensity factor has been calculated theoretically for the cracked plate subjected to remote normal stress and reinforced with a sheet by symmetric seam welding. The singular integral equation was derived based on displacement compatibility condition between the cracked sheet and the reinforcement plate, and solved by means of Erdogran and Gupta's method. The results from the derived equation for stress intensity factor were compared with FEM solutions and seems to be reasonable. The reinforcement effect gets better as welding line is closer to the crack and the stiffness ratio of the cracked plate and the reinforcement sheet becomes larger.

  • PDF

Simplified Moment-Curvature Relationship Model of Reinforced Concrete Columns Considering Confinement Effect (구속효과를 고려한 철근 콘크리트 기둥의 모멘트-곡률 관계 단순모델)

  • Kwak, Min-Kyoung;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.279-288
    • /
    • 2016
  • The present study simplified the moment-curvature relationship to straightforwardly determine the flexural behavior of reinforced concrete (RC) columns. For the idealized column section, moments and neutral axis depths at different stages(first flexural crack, yielding of tensile reinforcing bar, maximum strength, and 80% of the maximum strength at the descending branch) were derived on the basis of the equilibrium condition of forces and compatibility condition. Concrete strains at the extreme compression fiber beyond the maximum strength were determined using the stress-strain relationship of confined concrete, proposed by Kim et al. The lateral load-displacement curves converted from the simplified moment-curvature relationship of columns are well consistent with test results obtained from column specimens under various parameters. The moments and the corresponding neutral axis depth at different stages were formulated as a function of longitudinal reinforcement and transverse reinforcement indices and/or applied axial load index. Overall, curvature ductility of columns was significantly affected by the axial load level as well as concrete compressive strength and the amount of longitudinal and transverse reinforcing bars.

H-refined Shape Design Sensitivity Analysis of Elastic Structures using Multi-Resolution Approach (다중 조밀도를 이용한 탄성 구조의 h-세분화 아이소-지오메트릭 설계민감도 해석)

  • Lee, Taeho;Yoon, Minho;Cho, Seonho;Koo, Bonyong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.3
    • /
    • pp.155-163
    • /
    • 2018
  • One of the major disadvantages of isogeometric analysis(IGA) is that local refinement is nearly impossible in a conventional manner because of the tensor product nature in NURBS. In this research, we investigate a local refinement scheme for isogeometric analysis, named multi-resolution approach where different resolutions are employed at each subdomain, using h-refinement relation to endow displacement compatibility on an interface of subdomains. Then, we develop shape sensitivity analysis possessing same compatibility condition as in the analysis. Numerical examples are shown to demonstrate the computational efficiency of the method in analysis especially stress concentration problem and accurate sensitivity results which is also compatible on the interface.

Buckling and Vibration Characteristics of the Capsule for Nuclear Fuel Irradiation Test (핵연료 조사시험용 캡슐 구조물의 좌굴 및 진동특성)

  • 강영환;김봉구;류정수;김영진;최명환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.125-130
    • /
    • 2004
  • The vibration and buckling characteristics of the capsule for fuel irradiation test are studied. The natural frequencies of the capsule in air and under water are obtained by modal testing and finite element(FE) analysis using ANSYS program, and accelerations with flow are measured to estimate the compatibility with the operation requirement of the HANARO reactor. The experimental fundamental frequency of the capsule in the x and z direction is 8.5Hz and 8.75Hz in air, and 7.5Hz and 7.75Hz under water, respectively. The maximum amplitude of accelerations under the normal operating condition is measured as 11.0m/s$^2$ that is within the allowable vibrational limit(18.99m/s$^2$) of the reactor structure. Also, the maximum displacement at 100% flow is calculated as 0.13mm which is not interference with other nearby structures. FE analysis results show that the natural frequencies are found to be similar to those of the modal testing when three supporting parts are considered as simply supported conditions. From the buckling analysis, when the loading tool is applied, the critical buckling load of the capsule is 233N.

  • PDF

Buckling and Vibration Characteristics of the Capsule for Nuclear Fuel Irradiation Test (핵연료 조사시험용 캡슐 구조물의 좌굴 및 진동특성)

  • 강영환;김봉구;류정수;김영진;최명환
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.741-748
    • /
    • 2004
  • The vibration and buckling characteristics of the capsule for fuel irradiation test are studied. The natural frequencies of the capsule in air and under water are obtained by modal testing and finite element (FE) analysis using ANSYS program, and accelerations with flow are measured to estimate the compatibility with the operation requirement of the HANARO reactor. The experimental fundamental frequencies of the capsule in the x and z direction are 8.5 Hz and 8.75 Hz in air, and 7.5 Hz and 7.75 Hz under water, respectively. The maximum amplitude of accelerations under the normal operating condition is measured as 11.0 m/s$^2$ that is within the allowable vibrational limit(18.99 m/s$^2$) of the reactor structure. Also, the maximum displacement at 100% flow is calculated as 0.13 mm which is not interference with other nearby structures. FE analysis results show that the natural frequencies are found to be similar to those of the modal testing when three supporting parts are considered as simply supported conditions. From the buckling analysis, when the loading tool is applied, the critical buckling load of the capsule is 233 N.