• Title/Summary/Keyword: Dispersion stresses method

Search Result 13, Processing Time 0.018 seconds

Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM

  • Fenjan, Raad M.;Moustafa, Nader M.;Faleh, Nadhim M.
    • Advances in nano research
    • /
    • v.8 no.4
    • /
    • pp.283-292
    • /
    • 2020
  • In the present research, differential quadrature (DQ) method has been utilized for investigating free vibrations of porous functionally graded (FG) micro/nano beams in thermal environments. The exact location of neutral axis in FG material has been assumed where the material properties are described via porosity-dependent power-law functions. A scale factor related to couple stresses has been employed for describing size effect. The formulation of scale-dependent beam has been presented based upon a refined beam theory needless of shear correction factors. The governing equations and the associated boundary conditions have been established via Hamilton's rule and then they are solved implementing DQ method. Several graphs are provided which emphasis on the role of porosity dispersion type, porosity volume, temperature variation, scale factor and FG material index on free vibrational behavior of small scale beams.

A Numerical Study On Various Energy and Environmental Systems(Ⅰ) : LPG dispersion, Lake flow, Primary clarifier, Hood ventilation, Cyclone combustor, Dow chlorination reactor. (에너지$\cdot$환경 제반 시스템에 관한 수치 해석적 연구 (Ⅰ) : LPG 확산, 호소 유동, 일차침전조, 국소 환기용 후두, 싸이클론 연소로, Dow 화학 반응로)

  • Jang Dong-Sun;Kim Gyeong-Mi;Lee Eun-Ju;Park Byeong-Su;Kim Bok-Sun
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.93-108
    • /
    • 1997
  • This paper describes several computational results on the various energy and environmental problems using Patankar's SIMPLE method. The specific problems included in this study are : pollutant and flammable material dispersions in open and confined areas, buoyancy-driven flow in a lake, primary clarifier for water and waste water treatment, hood ventilation in workplace. cyclone combustor and Dow chlorination reactor. A control-volume based finite-difference method is employed together with the power-law scheme. The pressure-velocity coupling is resolved by the use of the revised version of SIMPLE, says SIMPLER and SIMPLEC. The Reynolds stresses are closed using the standard or RNG κ-ε models. A nonequilibrium turbulent reaction model is developed for the application of the chlorination process in the Dow thermal reactor. Other important empirical models and physical insights appeared in this study are presented and discussed in a brief note. The computational method developed in this study is considered, in general, as a viable tool for the design and determination of the optimal operating condition of various environmental engineering system of interest.

  • PDF

The Study on the Improvement of the Strength and the Thermal Shock Resistance of $Al_2O_3-ZrO_2$ Composites ($Al_2O_3-ZrO_2$ 복합체의 강도 및 열충격 저항의 향상에 관한 연구)

  • Hwang, K.H.;Bae, W.T.;Choi, M.D.;Oh, K.D.;Kim, K.U.;Kim, H.
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.225-230
    • /
    • 1988
  • The strength and thermal shock resistance of $Al_2O_3-ZrO_2$ composites have been studied. The tetragonal $ZrO_2$ powder containing 1 mol.% $Y_2O_3$ and monoclinic $ZrO_2$ powder were prepared by coprecipitation method and subsequently mixed with $Al_2O_3$ powder and granulated by sieving. Duplex composites were prepared by dry mixing matrix agglomerate with 15 to 30 vol.% of dispersion agglomerate, followed by pressing and sintering at 1$600^{\circ}C$ for1 hr. These $Al_2O_3-ZrO_2$ 2 composites having heterogeneous structure showed improved thermal shock behaviors because of the microcracking and pores in dispersed granules, and compressive stresses around dispersed granules resulting from $ZrO_2$ transformation.

  • PDF