• 제목/요약/키워드: Dispersion modeling

검색결과 274건 처리시간 0.023초

방사능 누출 사례일의 국내.외 라그랑지안 입자확산 모델링 결과 비교 (Lagrangian Particle Dispersion Modeling Intercomparison : Internal Versus Foreign Modeling Results on the Nuclear Spill Event)

  • 김철희;송창근
    • 한국대기환경학회지
    • /
    • 제19권3호
    • /
    • pp.249-261
    • /
    • 2003
  • A three-dimensional mesoscale atmospheric dispersion modeling system consisting of the Lagrangian particle dispersion model (LPDM) and the meteorological mesoscale model (MM5) was employed to simulate the transport and dispersion of non-reactive pollutant during the nuclear spill event occurred from Sep. 31 to Oct. 3, 1999 in Tokaimura city, Japan. For the comparative analysis of numerical experiment, two more sets of foreign mesoscale modeling system; NCEP (National Centers for Environmental Prediction) and DWD (Deutscher Wetter Dienst) were also applied to address the applicability of air pollution dispersion predictions. We noticed that the simulated results of horizontal wind direction and wind velocity from three meteorological modeling showed remarkably different spatial variations, mainly due to the different horizontal resolutions. How-ever, the dispersion process by LPDM was well characterized by meteorological wind fields, and the time-dependent dilution factors ($\chi$/Q) were found to be qualitatively simulated in accordance with each mesocale meteorogical wind field, suggesting that LPDM has the potential for the use of the real time control at optimization of the urban air pollution provided detailed meteorological wind fields. This paper mainly pertains to the mesoscale modeling approaches, but the results imply that the resolution of meteorological model and the implementation of the relevant scale of air quality model lead to better prediction capabilities in local or urban scale air pollution modeling.

The Real -Time Dispersion Modeling System

  • Koo, Youn-Seo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제18권E4호
    • /
    • pp.215-221
    • /
    • 2002
  • The real-time modeling system, named AirWatch System, has been developed to evaluate the environmental impact from a large source. It consists of stack TMS (TeleMetering System) that measures the emission data from the source, AWS (Automatic Weather Station) that monitors the weather data and computer system with the dispersion modeling software. The modeling theories used in the system are Gaussian plume and puff models. The Gaussian plume model is used for the dispersion in the simple terrain with a point meteorological data while the puff model is for the dispersion in complex terrain with three dimensional wind fields. The AirWatch System predicts the impact of the emitted pollutants from the large source on the near-by environment on the real -time base and the alarm is issued to control the emission rate if the calculated concentrations exceed the modeling significance level.

Comparison of Contaminant Transport between the Centrifuge Model and the Advection Dispersion Equation Model

  • Young, Horace-Moo;Kim, Tae-Hyung
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제8권3호
    • /
    • pp.8-12
    • /
    • 2003
  • The centrifuge test result on capped sediment was compared to the advection- dispersion equation proposed for one layered to predict contaminant transport parameters. The fitted contaminant transport parameters for the centrifuge test results were one to three orders of magnitude greater than the estimated parameters from the advection-dispersion equation. This indicates that the centrifuge model over estimated the contaminant transport phenomena. Thus, the centrifuge provides a non-conservative approach to modeling contaminant transport. It should be also noted that the advection-dispersion equation used in this study is a one layered model. Two layered modeling approaches are more appropriate for modeling this data since there are two layers with different partitioning coefficients. Further research is required to model the centrifuge test using two-layered advection-dispersion models.

대단위발전소의 대기오염물질 확산에 관한 모델링 및 평가에 관한 연구 (Modeling and Evaluation on the Dispersion of Air Pollutants in the Large Scale Thermal Power Plant)

  • 전상기;이성철
    • 환경영향평가
    • /
    • 제6권2호
    • /
    • pp.81-92
    • /
    • 1997
  • This paper presents the results from the comparison analysis and evaluation between the air pollutant dispersion modeling results and the observation data in the area within a 10 km radius from the Boryong thermal power plants. The observation data used in this study were the air pollutant concentrations which had been continuously measured from 8 locations around the Boryong power plants by TMS(tele-monitoring system) for 3 months from September to November, 1996. The short-term and long-term predictions were carried out using ISC3 model and LPDM(Lagrangian Panicle Dispersion Model). The results of ISC3 modeling in a short-term showed highly as 0.7 in a correlation coefficient, but in a long-term showed just 0.54. On the other hand, LPDM showed 0.78 in a correlation coefficient for a long-term, but in a short-term showed highly value than the observation concentrations.

  • PDF

복제 방지용 PUF 모델링을 위한 전자계 해석 (Electromagnetic Analysis to Design Unclonable PUF Modeling)

  • 김태용;이훈재
    • 한국정보통신학회논문지
    • /
    • 제16권6호
    • /
    • pp.1141-1147
    • /
    • 2012
  • 본 논문에서는 Debye 분산 특성을 가지는 복제 방지용 PUF를 설계하기 위한 전자계 해석 방안을 고려하였다. 공기층과 유전체 기판 위에 형성된 분산매질(Si)로 구성된 1차원 모델 내에 전파하는 펄스를 모형하기 위해 FDTD법을 이용하였다. 불연속 경계면에 도달한 펄스는 일부 반사되고 일부는 투과되어 빠르게 감쇠되는 것으로 나타났다. 그 결과 FDTD법에 의한 유전체 기판을 고려한 Debye 분산특성을 가지는 1차원 복제방지용 PUF 모델링에 적용 가능한 것을 확인하였다.

보령화력 지역의 복잡지형이 대기확산 모델링에 미치는 영향 비교 (Comparison of Complex Terrain Effects in the Air Dispersion Modeling at the Poryong Power Plant Site)

  • 오현선;김영성;김진영;문길주;홍욱희
    • 한국대기환경학회지
    • /
    • 제13권6호
    • /
    • pp.427-437
    • /
    • 1997
  • Complex terrain which is rather typical topographic character in Korea would greatly influence the dispersion of air pollutant. In this study, we investigated how the complex terrain in the vicinity of the coal-fired plant affects the air dispersion modeling results by using several US EPA models: SCREEN, CTSCREEN, ISCLT3, ISCST3, and RTDM. Screening analysis was followed by long-term analysis, and the plume movement over the terrain was precisely tracked for selected cases. Screening analysis revealed that the highest concentration of sulfur dioxide occurs at the downwind distance of 1.3 km under the unstable conditions with weak winds. However, this highest level of $SO_2$ could be raised by 4 times even in the presence of a hill of 170 m at a distance of 2 to 3 km. Seasonal and annual average concentrations predicted with the ISCLT3, ISCST3, and RTDM models showed a rapid incrase of $SO_2$ levels in front of the high mountains which are located more than 15 km away fromt the source. The highest concentrations predicted with ISCST3 were significantly higher than those with ISCLT3 and RTDM mainly because ISCST3 chooses simple-terrain model calculations for receptors between stack height and plume height. Although the highest levels under the stable conditions were usually found in the areas beyond 15 km or more, their absolute values were not so high due to enough dispersion effects between the source and the receptors.

  • PDF

ASSESSMENT OF WIND CHARACTERISTICS AND ATMOSPHERIC DISPERSION MODELING OF 137Cs ON THE BARAKAH NPP AREA IN THE UAE

  • Lee, Jong Kuk;Kim, Jea Chul;Lee, Kun Jai;Belorid, Miloslav;Beeley, Philip A.;Yun, Jong-Il
    • Nuclear Engineering and Technology
    • /
    • 제46권4호
    • /
    • pp.557-568
    • /
    • 2014
  • This paper presents the results of an analysis of wind characteristics and atmosphere dispersion modeling that are based on computational simulation and part of a preliminary study evaluating environmental radiation monitoring system (ERMS) positions within the Barakah nuclear power plant (BNPP). The return period of extreme wind speed was estimated using the Weibull distribution over the life time of the BNPP. In the annual meteorological modeling, the winds from the north and west accounted for more than 90 % of the wind directions. Seasonal effects were not represented. However, a discrepancy in the tendency between daytime and nighttime was observed. Six variations of cesium-137 ($^{137}Cs$) dispersion test were simulated under severe accident condition. The $^{137}Cs$ dispersion was strongly influenced by the direction and speed of the main wind. A virtual receptor was set and calculated for observation of the $^{137}Cs$ movement and accumulation. The results of the surface roughness effect demonstrated that the deposition of $^{137}Cs$ was affected by surface condition. The results of these studies offer useful information for developing environmental radiation monitoring systems (ERMSs) for the BNPP and can be used to assess the environmental effects of new nuclear power plant.

점오염원의 대기확산에 관한 민감도 분석과 모델링 (The Sensitivity Analysis and Modeling for the Atmospheric Dispersion of Point Source)

  • 이화운;원경미;배성정
    • 한국환경과학회지
    • /
    • 제9권1호
    • /
    • pp.57-64
    • /
    • 2000
  • The sensitivity analysis of two short-term models (ISCST3, INPUFF2.5) is performed to improve the model accuracy. It appears that the sensitivities on the changes of wind speed, stack height and stack inner diameter in the near distance from source, stability and mixing height in the remote distance form source, are significant. Also the gas exit velocity, stack inner diameter, gas temperature and air temperature which affect the plume rise have some effects on the concentration values of each model within the downwind distance where final plume rise is determined. And in modeling for the atmospheric dispersion of point pollutant source INPUFF2.5 can calculate amount, trajectory of puff and concentration versus time at each receptors. So, it is compatible to analyze distribution of point pollutants concentration at modeling area.

  • PDF

Finite difference TVD scheme for modeling two-dimensional advection-dispersion

  • Guan, Y.;Zhang, D.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.22-27
    • /
    • 2006
  • This paper describes the development of the stream-tube based dispersion model for modeling contaminant transport in open channels. The operator-splitting technique is employed to separate the 2D contaminant transport equation into the pure advection and pure dispersion equations. Then the total variation diminishing (TVD) schemes are combined with the second-order Lax-Wendroff and third-order QUICKEST explicit finite difference schemes respectively to solve the pure advection equation in order to prevent the occurrence of numerical oscillations. Due to various limiters owning different features, the numerical tests for 1D pure advection and 2D dispersion are conducted to evaluate the performance of different TVD schemes firstly, then the TVD schemes are applied to experimental data for simulating the 2D mixing in a straight trapezoidal channel to test the model capability. Both the numerical tests and model application show that the TVD schemes are very competent for solving the advection-dominated transport problems.

  • PDF

미세 격자 대기 확산 모델링을 통한 안산지역 PM10 고농도 사례 분석 (An Analysis of the Case related with High PM10 Concentrations Using a Fine Grid Air Dispersion Modeling in Ansan Area)

  • 송동웅;송창근
    • 한국환경과학회지
    • /
    • 제12권9호
    • /
    • pp.977-986
    • /
    • 2003
  • In this study, the scenario for a numerical modeling of the fine grid scale air dispersion phenomena was proposed and an analysis of the special event which was occurred on September 3, 2002 was performed using by a coarse grid prognostic meteorological model, a fine grid diagnostic meteorological model and a fine grid air dispersion model. Based on the results, we found that the local circulations, like as land-sea breeze, should be seriously considered for evaluating the high PM10 concentration event and for making the reduction policy of the major air pollutant emissions in Ansan area.