• 제목/요약/키워드: Dispersion evacuation

검색결과 13건 처리시간 0.031초

MAS 기반 피난시뮬레이션을 이용한 분산대피 비교 연구 (A comparative Study for dispersion model in evacuation plan by using MAS-based evacuation simulation)

  • 장재순;이동호
    • 한국안전학회지
    • /
    • 제29권1호
    • /
    • pp.59-63
    • /
    • 2014
  • Smoke is one of the most critical factor when escaping from the fire since it reduces visibility and interrupts finding emergency exit lights. Therefore, it is recommended that an evacuation simulation program should incorporate the smoke factor. In addition, it is suggested that the program should include not only the unilateral damage by the smoke but also the detour evacuation by risk communication. In this study, MAS (Multi Agent System)-based simulation program which incorporates the reduced walking speed by smoke and adopts the dispersion evacuation logic during escaping from the fire. To make comparison, a commercial evacuation program, Pathfinder was used. It was found that the simulation results of MAS (Multi Agent System)-based program is better than Pathfinder in terms of safe evacuation. It means that evacuation simulation need a additional evaluation categories that include not only quick evacuation time but also safe evacuee number.

인간의 인지능력 기반의 행동특성이 반영된 분산대피에 관한 연구 (A Study for dispersion evacuation by behavioral characteristics based on human cognitive abilities)

  • 장재순;이동호
    • 대한안전경영과학회지
    • /
    • 제14권3호
    • /
    • pp.159-166
    • /
    • 2012
  • A*algorithm is highly useful to search the shortest route to the destination in the evacuation simulation. For this reason, A*algorithm is used to evaluate the evacuation experiment by the computer simulation. However there are some problems to analyze the outcome in relation to the reality. Because all the people in the building are not well-informed of the shortest route to the exit. And they will not move to the disaster spot though it is shortest route to the exit. Therefore, evacuation simulation program based on A*algorithm raise a problem of bottleneck phenomenon and dangerous result by damage surrounding the disaster spot. The purpose of this research is to prove the necessity for dispersion evacuation simulation by Multi agent system to solve the problems of the existing evacuation simulation program based on A*algorithm.

Development of a radiological emergency evacuation model using agent-based modeling

  • Hwang, Yujeong;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2195-2206
    • /
    • 2021
  • In order to mitigate the damage caused by accidents in nuclear power plants (NPPs), evacuation strategies are usually managed on the basis of off-site effects such as the diffusion of radioactive materials and evacuee traffic simulations. However, the interactive behavior between evacuees and the accident environment has a significant effect on the consequential gap. Agent-based modeling (ABM) is a method that can control and observe such interactions by establishing agents (i.e., the evacuees) and patches (i.e., the accident environments). In this paper, a radiological emergency evacuation model is constructed to realistically check the effectiveness of an evacuation strategy using NetLogo, an ABM toolbox. Geographic layers such as radiation sources, roads, buildings, and shelters were downloaded from an official geographic information system (GIS) of Korea, and were modified into respective patches. The dispersion model adopted from the puff equation was also modified to fit the patches on the geographic layer. The evacuees were defined as vehicle agents and a traffic model was implemented by combining the shortest path search (determined by an A * algorithm) and a traffic flow model incorporated in the Nagel-Schreckenberg cellular automata model. To evaluate the radiological harm to the evacuees due to the spread of radioactive materials, a simple exposure model was established to calculate the overlap fraction between the agents and the dispersion patches. This paper aims to demonstrate that the potential of ABM can handle disaster evacuation strategies more realistically than previous approaches.

인공지능 피난유도설비 적용에 따른 최적 대피시뮬레이션 연구 (A Study for Optimal Evacuation Simulation by Artificial Intelligence Evacuation Guidance Application)

  • 장재순;공일천;이동호
    • 한국안전학회지
    • /
    • 제28권3호
    • /
    • pp.118-122
    • /
    • 2013
  • For safe evacuation in the fire disaster, the evacuees must find the exit and evacuate quickly. Especially, if the evacuees don't know the location of the exit, they have to depend on the evacuation guidance system. Because the more smoke spread, the less visibility is decreasing, it is difficult to find the way to the exit by the naked eye. For theses reasons, the evacuation guidance system is highly important. However, the evacuation guidance system without change of direction has the risk that introduce to the dangerous area. In the evacuation safety assessment scenario by the evacuation simulation has the same problem. Because the evacuee in the simulation evacuate by the shortest route to the exit, the simulation result is same like the evacuation without the evacuation guidance system. In this study, it was used with MAS (Multi Agent System)-based simulation program including the evacuation guidance system to implement the change of evacuation by fire. Using this method, confidence of evacuation safety assessment can be increase.

Simulation 분석을 통한 지하철 역사 피난동선 설계 방안에 관한 연구 (A Study on the Design of Evacuation Route at Subway Station Using Simulation Analysis)

  • 함은구;노삼규
    • 한국방재학회 논문집
    • /
    • 제10권5호
    • /
    • pp.1-7
    • /
    • 2010
  • 지하철 역사 화재는 다수의 인명피해를 동반한 대구 지하철사고 이후 지하철 차량 내장재, 지하역사의 제연 시스템과 승객이 지상으로 탈출하기 위해 필요한 피난시간 등과 같은 기존 시스템에 대한 적정성 논란을 가져왔다. 기존의 제연설비는 화재 시배기 용량과 역사 시설구조의 복잡성으로 인한 제어방법의 한계가 따른다. 특히 지하철 역사 화재는 지중에서 지상으로 대피하는 형태로서 이는 부력으로 인한 연기의 이동방향과 피난방향이 같아지게 되므로 피난자들이 일반화재보다도 더욱 많은 연기의 영향에 노출되어져 버리는 결과가 발생한다. 본 연구에서는 하향식 피난 동선을 설계하여 피난완료시간의 단축 및 연기 층으로부터 피난자들을 격리시켜 희생자를 줄일 수 있는 방안을 제안하였다.

The Estimated Evacuation Time for the Emergency Planning Zone of the Kori Nuclear Site, with a Focus on the Precautionary Action Zone

  • Lee, Janghee;Jeong, Jae Jun;Shin, Wonki;Song, Eunyoung;Cho, Cheolwoo
    • Journal of Radiation Protection and Research
    • /
    • 제41권3호
    • /
    • pp.196-205
    • /
    • 2016
  • Background: The emergency planning zone (EPZ) of the city of Busan is divided into the precautionary actions zone (PAZ) and the urgent protective action planning zone; which have a 5-km radius and a 20-km to 21-km radius from the nuclear power plant site, respectively. In this study, we assumed that a severe accident occurred at Shin-Kori nuclear unit 3 and evaluated the dispersion speed of radiological material at each distance at various wind speeds, and estimated the effective dose equivalent and the evacuation time of PAZ residents with the goal of supporting off-site emergency action planning for the nuclear site. Materials and Methods: The total effective dose equivalent, which shows the effect of released radioactive materials on the residents, was evaluated using the RASCAL 4.2 program. In addition, a survey of 1,036 residents was performed using a standardized questionnaire, and the resident evacuation time according to road and distance was analyzed using the VISSIM 6.0 program. Results and Discussion: According to the results obtained using the VISSIM and RASCAL programs, it would take approximately 80 to 252.2 minutes for permanent residents to move out of the PAZ boundary, 40 to 197.2 minutes for students, 60 to 232.2 minutes for the infirm, such as elderly people and those in a nursing home or hospital, and 30 to 182.2 minutes for those temporarily within the area. Consequently, in the event of any delay in the evacuation, it is estimated that the residents would be exposed to up to $10mSv{\cdot}h^{-1}$ of radiation at the Exclusion Area Boundaries (EAB) boundary and $4-6mSv{\cdot}h^{-1}$ at the PAZ boundary. Conclusion: It was shown that the evacuation time for the residents is adequate in light of the time lapse from the initial moment of a severe accident to the radiation release. However, in order to minimize the evacuation time, it is necessary to maintain a system of close collaboration to avoid traffic congestion and spontaneous evacuation attempts.

화학사고 피해저감을 위한 GIS 연계 복합시뮬레이션 프로토타입 개발에 관한 연구 (A Study on the Development of GIS-based Complex Simulation Prototype for Reducing the Damage of Chemical Accidents)

  • 김은별;오주연;이태욱;오원규;김현주;임동연
    • 대한원격탐사학회지
    • /
    • 제36권5_4호
    • /
    • pp.1255-1266
    • /
    • 2020
  • 본 연구에서는 화학사고에 따른 인명피해 저감을 위해서 신속하고 정확한 화학물질 확산 범위 예측을 위한 복합시뮬레이션 프로토타입을 개발하였다. 복합시뮬레이션은 화학물질의 누출 특성을 고려하고자 근거리 확산과정에서 누출 운동량을 고려하였다. 원거리 확산과정에서는 사고지점 주변의 기상 및 지형정보를 이용하여 획일적으로 제시되었던 기존 모델의 바람 분포를 개선하여 실제와 유사한 바람장을 구현하였다. 개선된 근·원거리 확산과정에 따라 최종적으로 피해확산 범위는 기존의 모델에 비해서 정밀한 분포를 나타냈다. 본 연구에서 개발된 복합시뮬레이션의 시간대별 피해 범위 예측 결과 통해서 화학사고 발생 후 주민 대피 및 복귀 등 정책적 의사결정의 지원시스템으로서 활용도가 높을 것으로 기대된다.

지하공간의 위험성평가에 관한 연구 -지하철 역사내의 연기제어를 위한 제연경계벽의 효용성 평가 (A Study on the Risk Assessment of the Underground Space -The Estimation of Smoke Reservoir Screen for Smoke Control in Subway Station Platform)

  • 노삼규;허준호
    • 한국화재소방학회논문지
    • /
    • 제18권4호
    • /
    • pp.103-109
    • /
    • 2004
  • 지하공간에서의 재난은 많은 인명피해를 가져오고 있어서 지하공간에 대한 위험성평가는 인명피해를 최소화할 수 있는 방안으로 우선되어야 한다. 특히 지하철 역사에서의 피난동선과 연기의 이동경로가 동일하여 발생되는 피해를 최소화하기 위한 수직개구부상의 제연경계벽 설치연구는 필수적이며, 화재시뮬레이션을 통한 평가를 통하여 그 효용성을 분석한 결과 연기제어와 피난여유시간을 확보하고 기존 역사에 설치된 제연설비와의 연계된 작동시 많은 효과가 있을 것으로 확인되었다. 이를 통하여 일부 수도권 지하철 역사에는 수직개구부에 제연경계벽을 설치하였고, 계속적으로 위험성평가를 통한 분석을 진행하고 있다.

냉동, 냉장 시스템에서 NH3 누출 사고 시 장외영향평가를 위한 피해범위 및 대피거리 산정에 관한 연구 (Recommended Evacuation Distance for Offsite Risk Assessment of Ammonia Release Scenarios)

  • 박상욱;정승호
    • 한국안전학회지
    • /
    • 제31권3호
    • /
    • pp.156-161
    • /
    • 2016
  • An accident of an ammonia tank pipeline at a storage plant resulted in one death and three injuries in 2014. Many accidents including toxic gas releases and explosions occur in the freezing and refrigerating systems using ammonia. Especially, the consequence can be substantial due to that the large amount of ammonia is usually being used in the refrigeration systems. In this study, offsite consequence analysis has been investigated when ammonia leaks outdoors from large storages. Both flammable and toxic effects are under consideration to calculate the affected area using simulation programs for consequence analysis. ERPG-2 concentration (150 ppm) has been selected to calculate the evacuation distance out of various release scenarios for their dispersions in day or night. For offsite residential, the impact area by flammability is much smaller than that by toxicity. The methodology consists of two steps as followings; 1. Calculation for discharge rates of accidental release scenarios. 2. Dispersion simulation using the discharge rate for different conditions. This proactive prediction for accidental releases of ammonia would help emergency teams act as quick as they can.

CFD를 이용한 단일 구획 공간에서의 연기와 CO 확산 시뮬레이션 (CFD-based simulation of fire-induced smoke and carbon monoxide transportation in the single compartment)

  • 손윤석;김형권;오형식;김태옥;신동일
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 춘계학술논문발표회 논문집
    • /
    • pp.290-293
    • /
    • 2008
  • In this study, the Computational Fluid Dynamics (CFD) has been used to analyze the smoke movement and the carbon monoxide concentration distribution, both vertically and longitudinally, in a compartment, based on conservation laws. The Fire Dynamics Simulator (FDS) developed by National Institute of Standards and Technology (NIST) was used for numerical simulations using Reynolds averaged Navier-Stokes equations (RANS) model to solve for time-averaged properties. Results show, as a function of time, a detailed distribution of temperature and carbon monoxide concentration changing against the height above the floor and those changes alongside the distance away from the fire source. Fire-induced smoke and toxic gases like CO are more dangerous in a confined space. The result of study may contribute in designing the smoke evacuation system based on the precise tenable condition.

  • PDF