• 제목/요약/키워드: Dispersion Property

검색결과 338건 처리시간 0.024초

Effective time-frequency characterization of Lamb wave dispersion in plate-like structures with non-reflecting boundaries

  • Wang, Zijian;Qiao, Pizhong;Shi, Binkai
    • Smart Structures and Systems
    • /
    • 제21권2호
    • /
    • pp.195-205
    • /
    • 2018
  • Research on Lamb wave-based damage identification in plate-like structures depends on precise knowledge of dispersive wave velocity. However, boundary reflections with the same frequency of interest and greater amplitude contaminate direct waves and thus compromise measurement of Lamb wave dispersion in different materials. In this study, non-reflecting boundaries were proposed in both numerical and experimental cases to facilitate time-frequency characterization of Lamb wave dispersion. First, the Lamb wave equations in isotropic and laminated materials were analytically solved. Second, the non-reflecting boundaries were used as a series of frames with gradually increased damping coefficients in finite element models to absorb waves at boundaries while avoiding wave reflections due to abrupt property changes of each frame. Third, damping clay was sealed at plate edges to reduce the boundary reflection in experimental test. Finally, the direct waves were subjected to the slant-stack and short-time Fourier transformations to calculate the dispersion curves of phase and group velocities, respectively. Both the numerical and experimental results suggest that the boundary reflections are effectively alleviated, and the dispersion curves generated by the time-frequency analysis are consistent with the analytical solutions, demonstrating that the combination of non-reflecting boundary and time-frequency analysis is a feasible and reliable scheme for characterizing Lamb wave dispersion in plate-like structures.

소수성 CNT/PVDF 복합막에서 CNT의 분산과 전도성의 관계 (Relations Between Dispersion of CNTs and Electrical Conductivity in the Hydrophobic CNT/PVDF Composite Film)

  • 이선우
    • 한국전기전자재료학회논문지
    • /
    • 제28권7호
    • /
    • pp.462-466
    • /
    • 2015
  • In this paper, we investigated the relations between dispersion of CNTs (carbon nanotubes) and electrical conductivity in the CNT/PVDF (polyvinylidene fluoride) composite film. By adding hydrophobic CNTs as filler into the PVDF matrix, we fabricated hydrophobic and electrically conducting polymer coating film. Dispersion of CNTs in the CNT/PVDF composite film plays a significant role in terms of electrical conductivity and wetting property. Spray coating method was used to form the CNT/PVDF composite films by injecting the dispersed CNTs in the PVDF solution with different weight ratios from 0.7 wt% to 7 wt%. We investigated the electrical properties and contact angles of the CNT/PVDF composite films with the CNT concentration. Finally we discussed the conducting mechanism and feasibility of the CNT/PVDF composite film for the conducting polymer films.

Topological Analysis on the Dispersion Polymerization of Styrene in Ethanol

  • 손정모;박형석
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권3호
    • /
    • pp.245-253
    • /
    • 1996
  • A topological theory has been introduced to explain and evaluate the fractional volumes of system materials, the change of the weight and concentration of monomer molecules, molecular weight distribution, and interaction functions of polymer-polymer and polymer-oligomer, etc. for dispersion polymerization. The previous theory of Lu et al. has offered only an incomplete simulation model for dispersion polymer systems, whereas our present one gives a general theoretical model applicable to all the polymerization systems. The theory of Lu et al. considered only the physical property term caused by interaction between matters of low molecular weight (i.e., diluent, monomer, and oligomer) and polymer particles without dealing with physical properties caused by the structure of polymer networks in polymer particles, while our theory deals with all physical effect possible, caused by the displacement of not only entangled points but also junction points in polymer particles. The theoretically predictive values show good agreement with the experimental data for dispersion polymerization systems.

Electrical Characteristics of Carbon Nanotubes by Plasma and Microwave Surface Treatments

  • Cho, Sang-Jin;Shrestha, Shankar Prasad;Lee, Soon-Bo;Boo, Jin-Hyo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권3호
    • /
    • pp.905-907
    • /
    • 2014
  • The plasma and microwave surface treatments of carbon nanotubes that loaded on plastic substrates were carried out with expecting a change of carbon nanotube dispersion by increasing treatment time. The microwave treatment process was undergone by commercial microwave oven (800 W). The electrical property was measured by hall measurement and resistance was increased by increasing $O_2$ flow rate of plasma, suggesting an improvement of carbon nanotube dispersion and a possibility of controlling the resistances of carbon nanotubes by plasma surface treatment. The resistance was increased in both polyethylene terephthalate and polyimide substrates by increasing $O_2$ flow rate. Resistance changes only slightly with different $O_2$ flow treatment in measure rho for all polyimide samples. Sheet resistance is lowest in polyimide substrate not due to high carbon nanotube loading but due to tendency to remain in elongated structure. $O_2$ or $N_2$ plasma treatments on both polyethylene terephthalate and polyimide substrates lead to increase in sheet resistance.

Polyether Polyol을 이용한 수분산 폴리우레탄의 1,4-butanediol 사슬연장에 의한 물성변화 (A Study on Measurement of Mechanical Properties of Polyther Polyol Base Polyurethane Dispersion by 1,4-butanediol Chain Extension)

  • 이주엽
    • 한국응용과학기술학회지
    • /
    • 제31권4호
    • /
    • pp.711-718
    • /
    • 2014
  • 본 논문에서는 피혁에 사용되는 수용성 폴리우레탄 사슬 연장제인 1,4-butanediol(1,4-BD)의 함유에 따른 물성변화를 조사하였다. 합성에 사용된 시약은 poly propylene glycol(PPG), isoporon diisocyanate((IPDI), dimethylolpropionic acid(DMPA), 1,4-BD를 사용하였다. 1,4-BD의 함유에 따른 내용제성과 내굴곡성 측정값은 시료 전부 우수한 물성을 보였다. 인장강도, 내마모성 측정결과 1,4-BD가 많이 함유된 시료들이 각각 $1.80kg_f/mm^2$, 49.54 mg.loss로 우수한 물성을 확인하였다. 연실율 측정결과 1,4-BD가 적게 함유된 시료가 364%로 가장 우수한 측정값을 나타냈다.

The Influence of Functionalization of the Fe3O4 Nanoparticle on its Dispersion Property

  • Han, Jin Soon;An, Gye Seok;Park, Bong Geun;Choi, Sung-Churl
    • 한국세라믹학회지
    • /
    • 제55권1호
    • /
    • pp.80-84
    • /
    • 2018
  • In this study, to improve the dispersity of $Fe_3O_4$ nanoparticles, dispersion properties were considered with various types of functionalization of $Fe_3O_4$ nanoparticles. Due to its high surface area, the electrically neutral state of its surfaces, and its magnetic momentum, $Fe_3O_4$ nanoparticles are easily aggregated in solution. In order to prevent aggregation, $Fe_3O_4$ nanoparticles were functionalized with carboxyl and amine groups in the form of a polymer compound. Carboxyl and amine groups were attached to the surface of $Fe_3O_4$ nanoparticles and the absolute value of the zeta potential was found to be enhanced by nearly 40 eV. Furthermore, the morphology and the magnetic property were analyzed for the application of $Fe_3O_4$ nanoparticles as a magnetic fluid.

시추공 환경변화에 따른 분산곡선 및 분산특성 (Dispersion Curves and Dispersion Characteristics Expected from Different Borehole Environments)

  • ;김영화;김종만
    • 지질공학
    • /
    • 제17권3호
    • /
    • pp.329-337
    • /
    • 2007
  • 밀도, P파속도, S파속도, 공경 등 주요 시추공 환경 요소의 변화가 분산에 어떠한 영향을 미치는지를 파악하기 위하여 먼저 우리나라에 분포하는 주요 암석의 물성을 대표하는 7 가지의 모델에 대한 분산곡선을 구했다. 단극음원과 쌍극음원을 고려했으며 76 mm 시추공과 150 mm의 시추공 조건이 고려되었다. 음원과 시추공경 그리고 물성을 달리하는 여러 환경에서 유도된 분산곡선을 비교 분석함으로써 시추공 음파의 분산특성, 특히 소구경 시추공에서의 분산특성을 규명할 수 있었다.

A study on the mechanically equivalent surrogate plate of U-Mo dispersion fuel using tungsten

  • Kim, Hyun-Jung;Yim, Jeong-Sik;Jeong, Yong-Jin;Lee, Kang-Hee
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.495-500
    • /
    • 2019
  • When a new fuel is developed, various mechanical properties are absolutely necessary for a safety analysis of the fuel for the licensing and prediction of its mechanical behavior during operation and accident conditions. In this paper, a mechanically equivalent surrogate plate of U-Mo dispersion fuel is presented using tungsten, substitute material of U-Mo particle. A surrogate plate, composed of tungsten/aluminum dispersion meat and aluminum alloy cladding, is manufactured with the same fabrication process with that of fuel plate except that a tungsten powder is used instead of U-Mo powder. A modal test showed that the surrogate plate and fuel plate have similar dynamic characteristics, and a tensile test demonstrated the similarity of the material property up to the yield strength range. The conducted tests proved that the surrogate tungsten plate has equivalent mechanical behaviors with that of a fuel plate, which leads to the acceptable use of a surrogate fuel assembly using tungsten/aluminum dispersion meat in various mechanical tests. The surrogate fuel assembly can be utilized for various out-of-pile characteristic tests, which are necessary for the licensing achievement of a research reactor that uses U-Mo dispersion fuel as a driver.

Fabrication of Nano-sized Metal Dispersed Magnesia Based Composites and Related Mechanical and Magnetic Properties

  • Choa, Yong-Ho;Tadachika Nakayama;Tohru Sekino;Koichi Niihara
    • The Korean Journal of Ceramics
    • /
    • 제5권4호
    • /
    • pp.395-399
    • /
    • 1999
  • MgO/metal nanocomposite powder mixtures were prepared by solution chemical processes to obtain suitable structure for ceramic/metal nanocomposites. Nickel or cobalt nitrate, as a source of metal dispersion, was dissolved into alcohol and mixed with magnesia powder. After calcined in air, these powders were reduced by hydrogen. Densified nanocomposites were successively obtained by Pulse Electric Current Sintering (PECS) process. The dispersed metal partical size depended on temperature and time in calcination and reduction processes. The phase analyses in the synthesized powders as a functioni of temperature were tracked using a dynamic high temperature X-ray diffractioni (HTXRD) system. Phase and crystallite size analyses were done using X-ray diffractioni and TEM. The MgO/metal nanocomposites were successfully fabricated, and ferromagnetic responses with enhanced coercive force were also investigated for these composites.

  • PDF

산화물 분산강화 동합금의 열처리에 따른 미세조직 및 기계적 특성 변화 (Effect of Annealing on Microstructural and Mechanical Property Variation of the Oxide-Dispersion-Strengthened Cu alloy)

  • 김용석
    • 한국분말재료학회지
    • /
    • 제13권1호
    • /
    • pp.25-32
    • /
    • 2006
  • The alumina dispersion-strengthened (DS) C15715 Cu alloy fabricated by a powder metallurgy route was annealed at temperatures ranging from $800^{\circ}C\;to\;1000^{\circ}C$ in the air and in vacuum. The effect of the annealing on microstructural stability and room-temperature mechanical properties of the alloy was investigated. The microstructure of the cold rolled OS alloy remained stable until the annealing at $900^{\circ}C$ in the air and in vacuum. No recrystallization of original grains occurred, but the dislocation density decreased and newly formed subgrains were observed. The alloy annealed at $1000^{\circ}C$ in the air experienced recrystallization and grain growth took place, however annealing in vacuum at $1000^{\circ}C$ did not cause the microstructural change. The mechanical property of the alloy was changed slightly with the annealing if the microstructure remained stable. However, the strength of the specimen that was recrystallized decreased drastically.