• Title/Summary/Keyword: Dispersion Coefficient

Search Result 373, Processing Time 0.024 seconds

Lubricating Effect of Water-soluble Hexagonal Boron Nitride Nanolubricants on AISI 304 Steel Sliding Pair

  • Gowtham Balasubramaniam;Dae-Hyun Cho
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.43-48
    • /
    • 2023
  • In this study, we investigate the tribological behavior of AISI 304 stainless steel pairs under deionized water and hexagonal boron nitride (h-BN) water dispersion lubrication. The specimen friction and wear properties are evaluated using a reciprocating ball-on-flat tribometer. The coefficient of friction remains nearly constant throughout the test under both lubricant conditions. The wear depth of the specimens under h-BN lubrication is smaller than that under deionized water lubrication, indicating the inhibition behavior of h-BN nanolubricants on direct metal-metal contacts. Optical micrographs and stylus profilometer measurements are performed to evaluate the severity of damage caused by the sliding motion and to determine the wear morphology of the specimens, respectively. The results show that h-BN nanolubricants does not have a significant effect on the friction behavior but demonstrates reduced wear owing to their trapping effect between the sliding interfaces. Moreover, scanning electron microscopy and energy-dispersive X-ray spectroscopy images of the specimens were acquired to confirm the trapping effect of h-BN between the sliding interfaces. The results also suggest that the trapped lubricants can distribute the contact pressure, reducing the wear damage caused by the metal-metal contact at the interface. In conclusion, h-BN nanolubricants have potential as an anti-wear additive for lubrication applications. Further investigation is needed to provide direct evidence of the trapping effect of h-BN nanoparticles between the sliding interfaces. These findings could lead to the development of more efficient and effective lubricants for various industrial applications.

Propagation behaviors of guided waves in graphene platelet reinforced metal foam plates

  • Wubin Shan;Hao Zhong;Nannan Zhang;Guilin She
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.637-646
    • /
    • 2023
  • At present, the research on wave propagation in graphene platelet reinforced composite plates focuses on the propagation behavior of bulk waves, in which the effect of boundary condition is ignored, there is no literature report on propagation behaviors of guided waves in graphene platelet reinforced metal foams (GPLRMF) plates. In fact, wave propagation is affected by boundary conditions, so it is necessary to study the propagation characteristics of guided waves. The aim of this paper is to solve this problem. The effective performance of the material was calculated using the mixing law. Equations of motion of GPLRMF plate is derived by using Hamilton's principle. Then, the eigenvalue method is used to obtain the expressions of bending wave, shear wave and longitudinal wave, and the degradation verification is carried out. Finally, the effects of graphene platelets (GPLs) volume fraction, elastic foundation, porosity coefficient, GPLs distribution types and porosity distribution types on the dispersion relations are studied. We find that these factors play an important role in the propagation characteristics and phase velocity of guided waves.

Characteristics of Hydrodynamics, Heat and Mass Transfer in Three-Phase Inverse Fluidized Beds (삼상 역 유동층의 수력학, 열전달 및 물질전달 특성)

  • Kang, Yong;Lee, Kyung Il;Shin, Ik Sang;Son, Sung Mo;Kim, Sang Done;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.451-464
    • /
    • 2008
  • Three-phase inverse fluidized bed has been widely adopted with its increasing demand in the fields of bioreactor, fermentation process, wastewater treatment process, absorption and adsorption processes, where the fluidized or suspended particles are small or lower density comparing with that of continuous liquid phase, since the particles are frequently substrate, contacting medium or catalyst carrier. However, there has been little attention on the three-phase inverse fluidized beds even on the hydrodynamics. Needless to say, the information on the hydrodynamics and transport phenomena such as heat and mass transfer in the inverse fluidized beds has been essential for the operation, design and scale-up of various reactors and processes which are employing the three-phase inverse beds. In the present article, thus, the information on the three-phase inverse fluidized beds has been summarized and reorganized to suggest a pre-requisite knowledge for the field work in a sense of engineering point of view. The article is composed of three parts; hydrodynamics, heat and mass transfer characteristics of three-phase inverse fluidized beds. Effects of operating variables on the phase holdup, bubble properties and particle fluctuating frequency and dispersion were discussed in the section of hydrodynamics; effects of operating variables on the heat transfer coefficient and on the heat transfer model were discussed in the section of heat transfer characteristics ; and in the section of mass transfer characteristics, effects of operating variables on the liquid axial dispersion and volumetric liquid phase mass transfer coefficient were examined. In each section, correlations to predict the hydrodynamic characteristics such as minimum fluidization velocity, phase holdup, bubble properties and particle fluctuating frequency and dispersion and heat and mass transfer coefficients were suggested. And finally suggestions have been made for the future study for the application of three-phase inverse fluidized bed in several available fields to meet the increasing demands of this system.

Horizontal 2-D Finite Element Model for Analysis of Mixing Transport of Heat Pollutant (열오염 혼합 거동 해석을 위한 수평 2차원 유한요소모형)

  • Seo, Il Won;Choi, Hwang Jeong;Song, Chang Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6B
    • /
    • pp.507-514
    • /
    • 2011
  • A numerical model has been developed by employing a finite element method to simulate the depth-averaged 2-D dispersion of the heat pollutant, which is an important pollutant material in natural streams. Among the finite element methods, the Streamline Upwind/Petrov Galerkin (SUPG) method was applied. Also both linear and quadratic elements can be applied so that irregular river boundaries can be easily represented. To show the movement of heat pollutants, the reaction term describing heat transfer was represented as an equation in which sink/source term is proportional to the difference between the equilibrium temperature and water surface temperature. The equation was expressed so that the water surface temperature changes according to the temperature transfer coefficient and the equilibrium temperature. For the calibration of the model developed, analytic and numerical results from a case of rectangular channel with full width continuous injection have been compared in a steady state. The comparisons showed that the numerical results were in good agreement with analytical solutions. The application site was selected from the downstream of Paldang dam to Jamsil submerged weir, and overall length of this site is about 22.5 km. The change of water temperature caused by the discharge from the Guri sewage treatment plant has been simulated, and results were similar to the observed data. Overall it is concluded that the developed model can represent the water temperature changes due to heat transport accurately. But the verification using observed data will further enhance the validity of the model.

Physical Analysis of High Strength Concrete According to Mixing Methods of Binders for Application Analysis of Pre-Mix Cement (프리믹스 시멘트의 활용성 분석을 위한 결합재의 혼합방법에 따른 고장도 콘크리트의 물성 분석)

  • Han, Cheon-Goo;Lee, Hae-Ill
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.127-133
    • /
    • 2009
  • It is important to increase the strength of binders in order to enhance the strength of concrete. However, when the mineral admixture used for high strength concrete is incorporated individually, its dispersibility decreases due to the phenomenon of compaction, which reduces its fluidity and results in insufficient strength being created. To solve this problem, we can pre-mix each binder in advance to disperse a mineral admixture among binders, which will strengthen the fluidity and strength of concrete. Therefore, this study analyzed the properties of high strength concrete depending on the mix method used, to determine the effect of pre-mix cements ranging from W/B 15 to 35%. It was found that the fluidity of pre-mix increased to a level higher than that of individual mix due to its dispersion and ball bearing effect. The air content was slightly decreased from the result of individual mix due to the micro filler effect, which causes fine particles of silica-fume to fill the voids among cement particles, while the setting time of pre-mix was shorter than that of individual mix, because enhanced dispersion of pre-mix affects hydration heat time. The compressive strength of pre-mix increased due to the phenomenon of compaction of gap structure, and the variation of coefficient decreased by 1.69% on average in strength variation.

QSAR on the Inhibition Acticity of Flavopiridol Analogues against Breast Cancer MCF-7 (Flavopiridol 유도체에 의한 유방암 MCF-7 세포의 저해 활성에 관한 구조와 활성과의 관계)

  • Soung, Min-Gyu;Joo, Sung-Mo;Song, Ah-Reum;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.147-153
    • /
    • 2007
  • To search for a molecular design of a new breast cancerous inhibitory active compound, 2D-QSAR and HQSAR between the substituents of flavopiridol analogues as substrates and their breast cancerous inhibitory activities against MCF-7 cell were analyzed and discussed quantitatively. It was found that the dispersion with molecule and steric hindrance with substituents will have a tremendous impact on the inhibitory activities from the 2D-QSAR model (1). Also, MR constant is better than that of MS constant as animportant factor. The inhibitory activities from 2D-QSAR model (2) were dependent upon the optimum MR constant (MR = 126 $Cm^3/mol$). Optimized HQSAR model (V) exhibited the best predictability of the inhibitory activities based on the cross-validated $r^2_{cv}$($q^2$= 0.583) and non-cross-validated conventional coefficient ($r^2_{ncv}$= 0.982). From the contribution maps, the inhibitory activity by the imino group on $C_9$ atom was higher than that of the hydroxyl group of $C_8$ atom on the A ring in molecule. Therefore, we can confirm that the dispersion by substituents in molecule is the most important factor in inhibitory activities against MCF-7 cell.

Analysis of Two-Dimensional Pollutant Transport in Meandering Streams (사행하천에서 오염물질의 2차원 거동특성 해석)

  • Oh, Jung-Sun;Seo, Il-Won;Kim, Young-Han
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.12
    • /
    • pp.979-991
    • /
    • 2004
  • In this study, RMA2 and RMA4, the 2-D depth-averaged models, were employed to simulate the two-dimensional mixing characteristics of the pollutants in the natural streams. The velocity and depth were first calculated using RMA2, 2-D hydrodynamic model, and then the resulting flow field was inputted to RMA4, 2-D water quality model, to compute the concentration field. RMA models were verified using the velocity and concentration data measured in S-curved meandering channel. The results showed that the RMA2 model simulated well the phenomenon that the maximum velocity line is located at the Inner bank of meandering channel, and the RMA4 model was well adapted to reproduce the general mixing behavior and the separation of tracer clouds. Comparing model simulations with measured data in the field experiments, RMA2 model simulated well general flow field and tendency that the maximum velocity line skewed toward the outer bank which were found in field experiments. The simulations of RMA4 model showed that the center of the tracer cloud tends to follow the path in which the maximum velocity occurs. In this study, the dispersion coefficients are fine-tuned based on the measured coefficients calculated using field concentration data, and the results show reasonable agreement with predictive equations.

Travel Times of Radionuclides Released from Hypothetical Multiple Source Positions in the KURT Site (KURT 환경 자료를 이용한 가상의 다중 발생원에서의 누출 핵종의 이동 시간 평가)

  • Ko, Nak-Youl;Jeong, Jongtae;Kim, Kyung Su;Hwang, Youngtaek
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.281-291
    • /
    • 2013
  • A hypothetical repository was assumed to be located at the KURT (KAERI Underground Research Tunnel) site, and the travel times of radionuclides released from three source positions were calculated. The groundwater flow around the KURT site was simulated and the groundwater pathways from the hypothetical source positions to the shallow groundwater were identified. Of the pathways, three pathways were selected because they had highly water-conductive features. The transport travel times of the radionuclides were calculated by a TDRW (Time-Domain Random Walk) method. Diffusion and sorption mechanisms in a host rock matrix as well as advection-dispersion mechanisms under the KURT field condition were considered. To reflect the radioactive decay, four decay chains with the radionuclides included in the high-level radioactive wastes were selected. From the simulation results, the half-life and distribution coefficient in the rock matrix, as well as multiple pathways, had an influence on the mass flux of the radionuclides. For enhancing the reliability of safety assessment, this reveals that identifying the history of the radionuclides contained in the high-level wastes and investigating the sorption processes between the radionuclides and the rock matrix in the field condition are preferentially necessary.

Pyroelectric Properties of the $\beta$-PVDF (Poly(vilnylidene fluoride)) Thin Film Prepared by Vacuum Deposition with Applying Electric Field (전계인가 진공 증착법으로 제작된$\beta$ -PVDF (Poly(vinylidene fluoride)) 박막의 초전 특성)

  • Chang, Dong-Hoon;Kang, Seong-Jun;Yoon, Yung-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.5
    • /
    • pp.23-30
    • /
    • 2002
  • The PVDF (Polyvinylidene Fluoride) thin film having P phase is prepared by the vacuum deposition with applying the electric field and its pyroelectric properties are studied by using a dynamic method to examine the possibility of the application to the pyroelectric IR sensor. The pyroelectric responses of the PVDF thin film are characterized as the frequency dispersion in both low and high modulation frequency regions, and their frequency dependences are observed. In the low frequency region (2~10Hzz), the polarization can easily rotate with the increase of modulation frequency and show the maximum since the reorientation rate of domains is higher than the modulation frequency. On the other hand, in the high frequency region (100~1000Hz), the pyroelectric response decreases as the frequency increases, because the reorienatation rate of domains is suppressed and thus, the change of polarization decreases. Pyroelectric coefficient, figure of merits for noise equivalent power and detectivity of the PVDF thin film are measured as 3.2$\times$10$^{-10}$ C/$\textrm{cm}^2$.K, 2.34$\times$10$^{-10}$ C.cm/J and 1.32$\times$10$^{-9}$ C.cm/J, respectively. Also, the noise equivalent and the detectivity are 1.66$\times$10$^{-7}$ W/H $z^{$\sfrac{1}{2}$}$, 6.03$\times$10$^{5}$ cm.H $z^{$\sfrac{1}{2}$}$W, respectively.

Synthesis, Dispersion, and Tribological Characteristics of Alkyl Functionalized Graphene Oxide Nanosheets for Oil-based Lubricant Additives (액체 윤활제 첨가제용 알킬 기능화된 산화 그래핀의 합성/분산 및 트라이볼로지적 특성)

  • Choe, Jin-Yeong;Kim, Yong-Jae;Lee, Chang-Seop
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.533-540
    • /
    • 2018
  • Graphene has been reported to be an excellent lubricant additive that reduces friction and wear when coated on the surface of various materials or when dispersed in lubricants as an atomic thin material with the low surface energy. In this study, alkyl functionalized graphene oxide (FGO) nanosheets for oil-based lubricant additives were prepared by using three types of alkyl chloride chemicals (butyl chloride, octyl chloride, and tetradecyl chloride). The chemical and structural properties of the synthesized FGOs were analyzed by Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), and transmission electron microscope (TEM). The synthesized FGOs were dispersed at 0.02 wt% in PAO-0W40 oil and its tribological characteristics were investigated using a high frequency friction/wear tester. The friction coefficient and the wear track width of poly alpha olefin (PAO) oil added with FGO-14 were tested by a ball-on-disk method, and the measured results were reduced by ~5.88 and ~3.8%, respectively compared with those of the conventional PAO oil. Thus, it was found that the wear resistance of PAO oil was improved. In this study, we demonstrated the successful functionalization of GO as well as the improvement of dispersion stability and tribological characteristics of FGOs based on various alkyl chain lengths.