• Title/Summary/Keyword: Dispersion Coefficient

Search Result 373, Processing Time 0.031 seconds

Derivation of the Dispersion Coefficient based on the Linear Wave Theory (선형파 이론에 의한 분산계수 유도)

  • 조홍연;정신택
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.4
    • /
    • pp.190-194
    • /
    • 2000
  • Dispersion coefficient influenced by the wave parameters was derived analytically using the vertical velocity distribution based on linear wave theory. It is the depth- and wave period-averaged value and shows larger values in deep water condition than in shallow water condition. It also shows the general pattern of the dispersion coefficient in the oscillatory flows, i.e. it converges the specific value as the wave period is much larger than the vertical mixing time but it approaches zcro as the wave period is much smaller than the vertical mixing time. The dispersion coefficient derived in the condition of the simple assumption have to be modified in order to consider the shallow water condition or the real condition.

  • PDF

Dispersion and Nonlinear Properties of Elliptical Air Hole Photonic Crystal Fiber

  • Rao, MP Srinivasa;Singh, Vivek
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.525-531
    • /
    • 2018
  • The effect of eccentricity on dispersion and nonlinear properties of a photonic crystal fiber having elliptical air holes is investigated using a fully vectorial effective index method. It is found that the effective refractive index increases with increase of eccentricity. The dependence of dispersion and nonlinear properties of the PCF on the eccentricity of the air hole is investigated. It is revealed that eccentricity of the air hole affects the zero dispersion wavelength. Further, the nonlinear properties such as mode field area, nonlinear coefficient and self phase modulation of the Photonic crystal fibers are analyzed. The mode field area increases and the nonlinear coefficient decreases with increase in eccentricity. The variation of the self phase modulation with elliptical air hole is also discussed.

Analysis of Longitudinal Dispersion Coefficient : Part I. Comparative Study of Existing Equations for Dispersion Coefficient (종확산계수에 관한 연구 : I. 기존 종확산계수 추정식 비교)

  • 서일원;정태성
    • Water for future
    • /
    • v.28 no.3
    • /
    • pp.205-216
    • /
    • 1995
  • Existing equations for dispersion coefficient are analyzed in depth to select proper dispersion coefficient which can represent dispersion characteristics of natural streams. Several equations are tested with measured data which were collected in 26 streams in the United States. Findings of this study are as follows. Elder's equation should not be used to estimate dispersion coefficient of the one-dimensional dispersion model because it underestimates significantly. McQuivey and Keefer's equation is overestimating, whereas Magazine et al.'s equation is underestimating. However, Iwasa and Aya's equation predicts relatively well. Fischer's equation is generally overestimating. Liu's equation predicts quite well. The performance of Liu's equation is the best of all especially in terms of accuracy. However, Liu's equation is generally overestimating in case of large river because the square of channel width is included in the equation. Therefore, it is recommended not to use Liu's equation in case of large rivers, especially rivers of which channel width is larger than 200m.

  • PDF

Enhancement of Vertical Atmospheric Dispersion Due to Roughness (조도에 기인한 연직방향 대기확산의 증대)

  • 박목현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.6
    • /
    • pp.643-650
    • /
    • 1998
  • Many atmospheric dispersion models have been based on the Gaussian distribution concept of plume spread. In application of Gaussian plume dispersion models, vertical dispersion coefficient 3 has been known as a sensitive variable. Vertical diffusivity K2 (=Oz2/2t) tends to increase with surface roughness, and the value of K3 in urban area is larger than that in rural area due to heat emission as well as increased roughness. Though Pasquill proposed a modification scheme for qz vs x system of Pasquill-Gifford under consideration of roughness effect in 1976, there appears not to be realistic reexamination on the modification scheme. In this study literature review on the effect of terrain or roughness on venical plume dispersion has been carried out in order to improve the prediction results of atmospheric pollution concentration. Again a few research objectives on vertical atmospheric dispersion in complex terrain were Proposed.

  • PDF

Purely Phase-Sampled Fiber Bragg Gratings with uniform bandwidth for Broadband Dispersion and Dispersion Slope Compensation (균일한 대역폭을 갖는 광대역 분산 및 분산 경사 보상을 위한 순 위상 샘플링 광섬유 Bragg 격자)

  • Lee Hojoon
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.6
    • /
    • pp.485-489
    • /
    • 2004
  • We demonstrated numerically that both the chromatic dispersion and the dispersion slope could be compensated by using purely phase-sampled superstructure fiber Bragg gratings provided with chirp of coupling coefficient along the wavelength axis. Also, we propose a purely phase-sampled Bragg grating for dispersion and dispersion slope compensation by introducing a chirp in coupling coefficient and sampling function. The bandwidth of all reflected channels can be equalized.

Influence of Modelling Approaches of Diffusion Coefficients on Atmospheric Dispersion Factors (확산계수의 모델링방법이 대기확산인자에 미치는 영향)

  • Hwang, Won Tae;Kim, Eun Han;Jeong, Hae Sun;Jeong, Hyo Joon;Han, Moon Hee
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.2
    • /
    • pp.60-67
    • /
    • 2013
  • A diffusion coefficient is an important parameter in the prediction of atmospheric dispersion using a Gaussian plume model, and its modelling approach varies. In this study, dispersion coefficients recommended by the U. S. Nuclear Regulatory Commission's (U. S. NRC's) regulatory guide and the Canadian Nuclear Safety Commission's (CNSC's) regulatory guide, and used in probabilistic accident consequence analysis codes MACCS and MACCS2 have been investigated. Based on the atmospheric dispersion model for a hypothetical accidental release recommended by the U. S. NRC, its influence to atmospheric dispersion factor was discussed. It was found that diffusion coefficients are basically predicted from a Pasquill- Gifford curve, but various curve fitting equations are recommended or used. A lateral dispersion coefficient is corrected with consideration for the additional spread due to plume meandering in all models, however its modelling approach showed a distinctive difference. Moreover, a vertical dispersion coefficient is corrected with consideration for the additional plume spread due to surface roughness in all models, except for the U. S. NRC's recommendation. For a specified surface roughness, the atmospheric dispersion factors showed differences up to approximately 4 times depending on the modelling approach of a dispersion coefficient. For the same model, the atmospheric dispersion factors showed differences by 2 to 3 times depending on surface roughness.

Suitability of Dispersion Coefficients of the Gaussian Plume Model for the Small Scale Release of Chlorine Gas (염소가스의 소규모 누출에 대한 Gaussian 연속모델의 분산계수 적용성)

  • Kim Tae-Ok;Jang Seo-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.1 s.22
    • /
    • pp.13-17
    • /
    • 2004
  • To evaluate suitability of the Gaussian plume model for the small scale release of a dense toxic gas, experimental concentrations of the small scale release of chlorine were compared with theoretical concentrations calculated by the Gaussian plume model using various dispersion coefficients. As a result, Ive found that the dispersion of chlorine gas was fairly varied with dispersion coefficient and atmospheric stability and that chlorine concentrations were well estimated by the Gaussian plume model using Briggs' dispersion coefficient and the effective release hight.

  • PDF

Assessment of Dispersion Coefficients and Downward Positions of Water Spray for Small-Scale Release of Chlorine Gas

  • Jang, Seo-Il;Kim, Youngran;Yu, Wooyun;Shin, Dongil;Park, Kyoshik;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.1
    • /
    • pp.51-56
    • /
    • 2015
  • To assess downward positions of water spray for the small-scale release of chlorine gas, dispersion coefficients for the Gaussian dispersion model were validated at the small-scale release experiment. And the downwind distances of water spray were assessed with the simulated results. As results, the Gaussian plume model using the Briggs' dispersion coefficient well estimated the dispersed characteristics for small-scale release of chlorine gas. The best adequate downwind position of water spray is the position of the maximum concentration of chlorine at the ground level. And the adequate vertical and horizontal dimensions of water spray consider the maximum width and height of cloud.

Time-split Mixing Model for Analysis of 2D Advection-Dispersion in Open Channels (개수로에서 2차원 이송-분산 해석을 위한 시간분리 혼합 모형)

  • Jung, Youngjai;Seo, Il Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.495-506
    • /
    • 2013
  • This study developed the Time-split Mixing Model (TMM) which can represent the pollutant mixing process on a three-dimensional open channel through constructing the conceptual model based on Taylor's assumption (1954) that the shear flow dispersion is the result of combination of shear advection and diffusion by turbulence. The developed model splits the 2-D mixing process into longitudinal mixing and transverse mixing, and it represents the 2-D advection-dispersion by the repetitive calculation of concentration separation by the vertical non-uniformity of flow velocity and then vertical mixing by turbulent diffusion sequentially. The simulation results indicated that the proposed model explains the effect of concentration overlapping by boundary walls, and the simulated concentration was in good agreement with the analytical solution of the 2-D advection-dispersion equation in Taylor period (Chatwin, 1970). The proposed model could explain the correlation between hydraulic factors and the dispersion coefficient to provide the physical insight about the dispersion behavior. The longitudinal dispersion coefficient calculated by the TMM varied with the mixing time unlike the constant value suggested by Elder (1959), whereas the transverse dispersion coefficient was similar with the coefficient evaluated by experiments of Sayre and Chang (1968), Fischer et al. (1979).

An Experimental Study of Vibrator Amplitude Change for a Clamping Force Dispersion and Friction Coefficient Decrease (체결력 산포와 마찰계수의 감소를 위한 가진기의 진동량 변화 실험)

  • Lee, Geum-Gang;Moon, Seok-Man;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.332-337
    • /
    • 2011
  • The object of this experimental study is to investigate influences of vibrator amplitude on clamping force in vibration for bolted joint. The experiment is that change the vibrator amplitude to check clamping force. also the friction coefficient calculated by equation to use an obtained in experiments. The main purpose of generation vibrations is decreasing the clamping force dispersion. also If vibration occurs while tightening the bolt is reduced coefficient of friction. In this paper, In experiments to measure the clamping force before vibrator's amplitude changing. Vibrator's amplitude changes to 5.5mm from 4.4mm. As a result, under various vibration condition, relationship of clamping force and Vibrator amplitude.