• 제목/요약/키워드: Dispersion Coefficient

검색결과 378건 처리시간 0.024초

Optimal Position of Optical Phase Conjugator for Compensation of Distorted WDM Signals with Initial Frequency Chirp

  • Lee Seong-Real;Choi Byung-Ha;Chung Myung-Rae
    • Journal of electromagnetic engineering and science
    • /
    • 제5권1호
    • /
    • pp.36-42
    • /
    • 2005
  • In this paper, the optimal position of optical phase conjugator(OPC) excellently compensating distorted WDM channels with initial frequency chirp due to both chromatic dispersion and self phase modulation(SPM) is numerically investigated. Highly-nonlinear dispersion shifted fiber(HNL-DSF) is used as a nonlinear medium of OPC in order to widely compensate WDM signal band. It is confirmed that if the OPC position was shifted from mid-way of total transmission length dependence on the initial frequency chirp as well as modulation format and fiber dispersion coefficient, it is possible to cancel the performance degradation owing to the initial frequency chirp. Using proposed configuration, it is possible to remove all in-line dispersion compensator, reducing span losses and system costs in the long-haul broadband WDM systems.

염소가스의 소규모 연속누출에서 분산특성 및 독성영향 해석 (Analysis of Dispersion Characteristics and Toxic Effect in the Small-Scale Continuous Release of Chlorine Gas)

  • 김태옥;장서일;이영재
    • 한국가스학회지
    • /
    • 제8권2호
    • /
    • pp.8-14
    • /
    • 2004
  • 본 연구는 염소가스의 소규모 연속누출에서 분산특성과 독성영향을 해석하였다. 염소 농도의 실험값과 이론값을 비교한 결과, Briggs의 분산계수와 유효누출높이를 사용한 가우시안 모델이 BM 모델보다 적용성이 우수하였다. 또한 가우시안 모델에 의해 염소농도를 산출하고 해석한 결과, 염소분산은 누출속도 보다 대기안정도와 바람속도에 크게 영향을 받으며, 독성영향은 염소분산에 미치는 매개변수의 영향과 유사한 경향을 나타내었다. 이때, 여러 독성기준에 의해 산출된 피해범위로부터 인명을 보호하기 위한 위험지역을 파악할 수 있었다.

  • PDF

현장 규모 biobarrier의 수리학적 특성과 기초 설계

  • 최영화;오재일;왕수균;배범한
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.426-430
    • /
    • 2003
  • Subsurface biobarrier technology has potential applications to contain contaminated groundwater and/or to degrade toxic pollutants in groundwater. Effective biobarrier formation is need to assess of hydrogeologic characteristics and to conduct practical operation strategies and design based on this prior to design biobarrier. Thus, in this study, we examined hydrogeologic characteristics in biobarrier construction site. Hydraulic conductivities which calculated from slug test data have shown difference with each well as 1.20$\times$10$^{-3}$ -6.00$\times$10$^{-5}$ cm/sec. Tracer test is a method in which concentration of tracer solution during withdrawal in each well by vacuum extraction system is measured with time. Tracer solution was continuously injected by constant head tank. Measured tracer concentration versus time data were fitted to analytical solution of convection dispersion equation (CDE). The fitting data of CDE to the measured data at each extraction well yielded were 0.61cm/min(pore velocity), 5.38$\textrm{cm}^2$/min(dispersion coefficient) for discharge rate of 0.47 1/min and 1.75cm/min(pore velocity), 36.34$\textrm{cm}^2$/min(dispersion coefficient) for discharge rate of 0.93 1/min. As a result, we acquired fundamental parameters which need to design biobarrier and operation strategies.

  • PDF

탄소 나노소재를 이용한 윤활유 기반 나노유체의 제조 및 평가 (Preparation and Characterization of Lubricating Oil-based Nanofluids Containing Carbon Nanoparticles)

  • 최철;정미희;오제명
    • 한국재료학회지
    • /
    • 제19권3호
    • /
    • pp.156-162
    • /
    • 2009
  • Lubricant-based nanofluids were prepared by dispersing carbon nanoparticles in gear oil. In this study, the effects of the particle size, shape and dispersity of the particles on the tribological properties of nanofluids were investigated. Dispersion experiments were conducted with a high-speed bead mill and an ultrasonic homogenizer, and the surfaces of the nanoparticles were simultaneously modified with several dispersants. The effective thermal conductivity of the nanofluids was measured by the transient hot-wire method, and the tribological behaviors of the nanofluids were also investigated with a disk-on-disk tribo-tester. The results of this study clearly showed that the combination of the nanoparticles, the deagglomeration process, the dispersant and the dispersion solvent is very important for the dispersity and tribological properties of nanofluids. Lubricant-based nanofluids showed relatively low thermal conductivity enhancement, but they were highly effective in decreasing the frictional heat that was generated. For nanofluids containing 0.1vol.% graphite particles in an oil lubricant, The friction coefficient in the boundary and fluid lubrication range was reduced to approximately 70% of the original value of pure lubricant.

A Simple Model for Dispersion in the Stable Boundary Layer

  • Kang Sung-Dae;Kimura Fujio;Lee Hwa-Woon;Kim Yoo-Keun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제1권1호
    • /
    • pp.35-43
    • /
    • 1997
  • Handling the emergency problems such as Chemobyl accident require real time prediction of pollutants dispersion. One-point real time sounding at pollutant source and simple model including turbulent-radiation process are very important to predict dispersion at real time. The stability categories obtained by one-dimensional numerical model (including PBL dynamics and radiative process) are good agreement with observational data (Golder, 1972). Therefore, the meteorological parameters (thermal, moisture and momentum fluxes; sensible and latent heat; Monin-Obukhov length and bulk Richardson number; vertical diffusion coefficient and TKE; mixing height) calculated by this model will be useful to understand the structure of stable boundary layer and to handling the emergency problems such as dangerous gasses accident. Especially, this simple model has strong merit for practical dispersion models which require turbulence process but does not takes long time to real predictions. According to the results of this model, the urban area has stronger vertical dispersion and weaker horizontal dispersion than rural area during daytime in summer season. The maximum stability class of urban area and rural area are 'A' and 'B' at 14 LST, respectively. After 20 LST, both urban and rural area have weak vertical dispersion, but they have strong horizontal dispersion. Generally, the urban area have larger radius of horizontal dispersion than rural area. Considering the resolution and time consuming problems of three dimensional grid model, one-dimensional model with one-point real sounding have strong merit for practical dispersion model.

  • PDF

Risk Assessment by Vehicle Speed Difference in Climbing Lanes

  • Oh, Heung-Un;Kang, Jin-Gu
    • International Journal of Safety
    • /
    • 제9권1호
    • /
    • pp.47-53
    • /
    • 2010
  • The speed difference in mountainous area is known causing traffic conflicts and accidents. Thus, climbing lanes have popularly been installed in mountainous roads around the world. In the present paper, vehicle speeds within and around climbing lanes of Ho-nam and Jung-ang expressway were collected and evaluated. The evaluation was performed in terms of coefficient of variations which represent dispersion of vehicle speed in climbing lanes. Results show that speed dispersion is more significant at segments before and after climbing lanes than those within climbing lanes. The estimated accident risk was evaluated using The Solomon's u-shaped curve. It was identified that the accident risk is also a lot significant at the same segments as much as 2.2 times greater than those of climbing lanes.

Numerical Analysis of Plume Characteristics and Liquid Circulation in Gas Injection Through a Porous Plug

  • Choi, Choeng-Ryul;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • 제14권12호
    • /
    • pp.1365-1375
    • /
    • 2000
  • Two phase flows have been numerically calculated to analyze plume characteristics and liquid circulation in gas injection through a porous plug. The Eulerian approach has been for formulation of both the continuous and dispersed phases. The turbulence in the liquid phase has been modeled using the standard $textsc{k}$-$\varepsilon$ turbulence model. The interphase friction coefficient has been calculated using correlations available in the literature. The turbulent dispersion of the phase has been modeled by the "dispersion Prand시 number". The predicted mean flows is compared well with the experimental data. The plume region area and the axial velocities are increased with the gas flow rate and with the decrease in the inlet area. The turbulent intensity also shows the same trend. Also, the space-averaged turbulent kinetic energy for various gas flow rates and inlet areas has been obtained. The results are of interest in the design and operation of a wide variety of materials and chemical processing operations.

  • PDF

측면 연마 광섬유를 이용한 용액의 광학 특성 측정 (Measurement of Optical Properties of a Liquid Based on a Side-polished Optical Fiber)

  • 이현진;김광택
    • 한국전기전자재료학회논문지
    • /
    • 제27권3호
    • /
    • pp.195-198
    • /
    • 2014
  • In this paper, a measurement method to obtain the optical properties of a liquid base on a side-polished single mode fiber was proposed and demonstrated. The device showed periodic resonance coupling against wavelengths. The refractive index and dispersion characteristics of a liquid were calculated by use of the spacings of periodic resonance wavelengths of the device. The thermo-optic coefficient of the liquid was obtained by monitering the shift of resonance wavelengths of the devices with change of environmental temperature.

On propagation of elastic waves in an embedded sigmoid functionally graded curved beam

  • Zhou, Linyun;Moradi, Zohre;Al-Tamimi, Haneen M.;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • 제44권1호
    • /
    • pp.17-31
    • /
    • 2022
  • This investigation studies the characteristics of wave dispersion in sigmoid functionally graded (SFG) curved beams lying on an elastic substrate for the first time. Homogenization process was performed with the help of sigmoid function and two power laws. Moreover, various materials such as Zirconia, Alumina, Monel and Nickel steel were explored as curved beams materials. In addition, curved beams were rested on an elastic substrate which was modelled based on Winkler-Pasternak foundation. The SFG curved beams' governing equations were derived according to Euler-Bernoulli curved beam theory which is known as classic beam theory and Hamilton's principle. The resulted governing equations were solved via an analytical method. In order to validate the utilized method, the obtained outcomes were compared with other researches. Finally, the influences of various parameters, including wave number, opening angle, gradient index, Winkler coefficient and Pasternak coefficient were evaluated and indicated in the form of diagrams.

Depth estimation for surface-breaking cracks in steel-fiber reinforced concrete using ultrasonic surface waves

  • Ahmet S. Kirlangic;Zafer Iscan
    • Structural Monitoring and Maintenance
    • /
    • 제9권4호
    • /
    • pp.373-388
    • /
    • 2022
  • A USW based diagnostic procedure is presented for estimating the depth of surface-breaking cracks. The diagnosis is demonstrated on seven lab-scale SFRC beam specimens, which are subjected to the CMOD controlled three-point bending test to create real bending cracks. Then, the recorded multiple ultrasonic signals are examined with the signal processing techniques, including wavelet transform and two-dimensional Fourier transform, to investigate the relationships between the crack depth and two diagnostic indices, namely the attenuation coefficient and dispersion index (DI). Finally, the reliabilities of these indices for depth estimation are verified with the visually measured crack depths as well as the crack features obtained with a digital image processing algorithm. It is found that the DI outperforms the attenuation coefficient in depth estimation, where this index displays good agreement with the visual inspection for 86% of the inspected specimens.