• 제목/요약/키워드: Dispersed flow

검색결과 209건 처리시간 0.025초

Shear stress analysis of phosphorylated potato starch based electrorheological fluid

  • Hong, Cheng-Hai;Choi, Hyoung-Jin
    • Korea-Australia Rheology Journal
    • /
    • 제19권4호
    • /
    • pp.221-225
    • /
    • 2007
  • Electrorheological characteristics of a dispersed system of phosphorylated potato starch particles in silicone oil investigated via a rotational rheometer equipped with a high voltage generator is being reanalysized. Flow curves of these ER fluids both under several applied electric field strengths and with different degrees of phosphate substitution were mainly examined via three different rheological constitutive equations of Bingham model, De Kee-Turcotte model and our previously proposed CCJ model. Among these, the CCJ equation was found to fit the data of phosphorylated potato starch well.

Migration in concentrated suspension of spherical particles dispersed in polymer solution

  • Kim, Chongyoup
    • Korea-Australia Rheology Journal
    • /
    • 제13권1호
    • /
    • pp.19-27
    • /
    • 2001
  • In this symposium paper, the migration and hydrodynamic diffusion of non-colloidal, spherical particles suspended in polymer solutions are considered under Poiseuille or torsional flows. The migration phenomena in polymer solutions are compared with those in Newtonian fluids and the effect of fluid elasticity is discussed. The experimental results on particle migration in dilute polymer solution reveal that even a slight change in the rheological property of the dispersing medium can induce drastic differences in flow behavior and migration of particles, especially in dilute and semi-concentrated suspensions.

  • PDF

Modeling and simulation of air-water upward annular flow characteristics in a vertical tube using CFD

  • Anadi Mondal;Subash L Sharma
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2881-2892
    • /
    • 2024
  • Annular flow refers to a special type of two-phase flow pattern in which liquid flows as a thin film at the periphery of a pipe, tube, or conduit, and gas with relatively high velocity flows at the center of the flow section. This gas also includes dispersed liquid droplets. The liquid film flow rate continuously changes inside the tube due to two processes-entrainment and deposition. To determine the liquid holdup, pressure drop, the onset of dryout, and heat transfer characteristics in annular flow, it is important to have proper knowledge of flow characteristics. Especially a better understanding of entrainment fraction is important for the heat transfer and safe operation of two-phase flow systems operating in an annular two-phase flow regime. Therefore, the objective of this work is to develop a computational model for the simulation of the annular two-phase flow regime and assess the various existing models for the entrainment rate. In this work, Computational Fluid Dynamics (CFD) in ANSYS FLUENT has been applied to determine annular flow characteristics such as liquid film thickness, film velocity, entrainment rate, deposition rate, and entrainment fraction for various gas-liquid flow conditions in a vertical upward tube. The gas core with droplets was simulated using the Discrete Phase Model (DPM) which is based on the Eulerian-Lagrangian approach. The Eulerian Wall Film (EWF) model was utilized to simulate liquid film on the tube wall. Three different models of Entrainment rate were implemented and assessed through user-defined functions (UDF) in ANSYS. Finally, entrainment for fully developed flow was determined and compared with the experimental data available in the literature. From the simulations, it was obtained that the Bertodano correlation performed best in predicting entrainment fraction and the results were within the ±30 % limit when compared to experimental data.

고분산 담지 금 촉매에 의한 Butadiene의 부분 수소화에 관한 연구 (Study on the Partial Hydrogenation of Butadiene over Highly Dispersed Supported Gold Catalysts)

  • 안호근;히로오 니이야마
    • 공업화학
    • /
    • 제10권7호
    • /
    • pp.1003-1007
    • /
    • 1999
  • 금을 공침법으로 고분산시켜 제조한 촉매와 함침법으로 제조한 금 및 코발트 촉매상에서의 부타디엔과 펜타디엔의 수소화 활성 및 생성물 분포를 상압 유통식 반응기에서 조사하여, 고분산 금 입자의 수소화 반응특성 및 그의 역할에 대하여 검토하였다. 고분산된 담지 금 촉매의 수소화 활성은 함침법으로 제조한 촉매에 비하여 크게 증가하였고, 100% 전환율에서도 부분 수소화만이 진행되어 부텐의 선택율은 거의 100%이었다. 그러나 코발트 담지 촉매에서는 부탄까지 쉽게 수소화되었다. 이와 같은 금 촉매의 특성은 담체와의 계면에 존재하는 금이 수소화 적절한 친화력을 가지는 독특한 성질 때문으로 생각되었다. 고분산 담지 금 촉매의 부타디엔 및 펜타디엔에 대한 생성물 분포에서 각각 1-부텐이 60~67%, 그리고 2-펜텐이 약 62%로 거의 일정하게 얻어졌는데, 이는 공역디엔의 통계학적 수소부가 개념으로 설명할 수 있었다.

  • PDF

Molecular evolutionary analysis reveals Arctic-like rabies viruses evolved and dispersed independently in North and South Asia

  • Yu, Xin;Zhu, Hongwei;Bo, Yongheng;Li, Youzhi;Zhang, Jianlong;Jiang, Linlin;Chen, Guozhong;Zhang, Xingxiao;Wen, Yongjun
    • Journal of Veterinary Science
    • /
    • 제22권1호
    • /
    • pp.5.1-5.16
    • /
    • 2021
  • Background: Arctic-like (AL) lineages of rabies viruses (RABVs) remains endemic in some Arctic and Asia countries. However, their evolutionary dynamics are largely unappreciated. Objectives: We attempted to estimate the evolutionary history, geographic origin and spread of the Arctic-related RABVs. Methods: Full length or partial sequences of the N and G genes were used to infer the evolutionary aspects of AL RABVs by Bayesian evolutionary analysis. Results: The most recent common ancestor (tMRCA) of the current Arctic and AL RABVs emerged in the 1830s and evolved independently after diversification. Population demographic analysis indicated that the viruses experienced gradual growth followed by a sudden decrease in its population size from the mid-1980s to approximately 2000. Genetic flow patterns among the regions reveal a high geographic correlation in AL RABVs transmission. Discrete phylogeography suggests that the geographic origin of the AL RABVs was in east Russia in approximately the 1830s. The ancestral AL RABV then diversified and immigrated to the countries in Northeast Asia, while the viruses in South Asia were dispersed to the neighboring regions from India. The N and G genes of RABVs in both clades sustained high levels of purifying selection, and the positive selection sites were mainly found on the C-terminus of the G gene. Conclusions: The current AL RABVs circulating in South and North Asia evolved and dispersed independently.

과냉 비등유동에 대한 CFD 모의 계산에서의 벽 인접격자 영향 (NEAL-WALL GRID DEPENDENCY OF CFD SIMULATION FOR A SUBCOOLED BOILING FLOW)

  • 인왕기;신창환;전태현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.320-325
    • /
    • 2010
  • A multiphase CFD analysis is performed to investigate the effect of near-wall grid for simulating a subcooled boiling flow in vertical tube. The multiphase flow model used in this CFD analysis is the two-fluid model in which liquid(water) and vapor(steam) are considered as continuous and dispersed fluids, respectively. A wall boiling model is also used to simulate the subcooled boiling heat transfer at the heated wall boundary. The diameter and heated length of tube are 0.0154 m and 2 m, respectively. The system pressure in tube is 4.5 MPa and the inlet subcooling is 60 K. The near-wall grid size in the non-dimensional wall unit ($y_{w}^{+}$) was examined from 64 to 172 at the outlet boundary. The CFD calculations predicted the void distributions as well as the liquid and wall temperatures in tube. The predicted axial variations of the void fraction and the wall temperature are compared with the measured ones. The CFD prediction of the wall temperature is shown to slightly depend on the near-wall grid size but the axial void prediction has somewhat large dependency. The CFD prediction was found to show a better agreement with the measured one for the large near-wall grid, e.g., $y_{w}^{+}$ > 100.

  • PDF

벽 비등모델을 이용한 과냉비등 유동에 대한 CFD 모의계산에서 벽 인접격자의 영향 (NEAR-WALL GRID DEPENDENCY OF CFD SIMULATION FOR A SUBCOOLED BOILING FLOW USING WALL BOILING MODEL)

  • 인왕기;신창환;전태현
    • 한국전산유체공학회지
    • /
    • 제15권3호
    • /
    • pp.24-31
    • /
    • 2010
  • boiling flow in vertical tube. The multiphase flow model used in this CFD analysis is the two-fluid model in which liquid(water) and gas(vapour) are considered as continuous and dispersed fluids, respectively. A wall boiling model is also used to simulate the subcooled boiling heat transfer at the heated wall boundary. The diameter and heated length of tube are 0.0154 m and 2 m, respectively. The system pressure in tube is 4.5 MPa and the inlet subcooling is 60 K. The near-wall grid size in the non-dimensional wall unit for lqiuid phase ($y^+_{w,l}$) was examined from 101 to 313 at the outlet boundary. The CFD calculations predicted the void distributions as well as the liquid and wall temperatures in tube. The predicted axial variations of the void fraction and the wall temperature are compared with the measured ones. The CFD prediction of the wall temperature is shown to slightly depend on the near-wall grid size but the axial void prediction has somewhat large dependency. The CFD prediction was found to show a better agreement with the measured one for the large near-wall grid, e.g., $y^+_{w,l}$ > 300 at the tube exit.

Transient Groundwater Flow Modeling in Coastal Aquifer

  • 이은희;현윤정;이강근;박병원
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2006년도 총회 및 춘계학술발표회
    • /
    • pp.293-297
    • /
    • 2006
  • Submarine groundwater discharge (SGD) and the interface between seawater and freshwater in an unconfined coastal aquifer was evaluated by numerical modeling. A two-dimensional vertical cross section of the aquifer was constructed. Coupled flow and salinity transport modeling were peformed by using a numerical code FEFLOW In this study, we investigated the changes in groundwater flow and salinity transport in coastal aquifer with hydraulic condition such as the magnitude of recharge flux, hydraulic conductivity. Especially, transient simulation considering tidal effect and seasonal change of recharge rate was simulated to compare the difference between quasi-steady state and transient state. Results show that SGD flux is in proportion to the recharge rate and hydraulic conductivity, and the interface between the seawater and the freshwater shows somewhat retreat toward the seaside as recharge flux increases. Considered tidal effect, SGD flux and flow directions are affected by continuous change of the sea level and the interface shows more dispersed pattern affected by velocity variation. The cases which represent variable daily recharge rate instead of annual average value also shows remarkably different result from the quasi-steady case, implying the importance of transient state simulation.

  • PDF

발전소 굴뚝에서의 입자 분산에 대한 수치해석 (Numerical study of particle dispersion from a power plant chimney)

  • 심정보;유동현
    • 한국입자에어로졸학회지
    • /
    • 제13권4호
    • /
    • pp.173-182
    • /
    • 2017
  • An Eulerian-Lagrangin approach is used to compute particle dispersion from a power plant chimney. For air flow, three-dimensional incompressible filtered Navier-Stokes equations are solved with a subgrid-scale model by integrating the Newton's equation, while the dispersed phase is solved in a Lagrangian framework. The velocity ratios between crossflow and a jet of 0.455 and 0.727 are considered. Flow fields and particle distribution of both cases are evaluated and compared. When the velocity ratio is 0.455, it demonstrates a Kelvin-Helmholtz vortex structure above the chimney caused by the interaction between crossflow and a jet, whereas the other case shows flow structures at the top of the chimney collapsed by fast crossflow. Also, complex wake structures cause different particle distributions behind the chimney. The case with the velocity ratio of 0.727 demonstrates strong particle concentration at the vortical region, whereas the case with the velocity ratio of 0.455 shows more dispersive particle distribution. The simulation result shows similar tendency to the experimental result.

분류층 가스화기에서의 고체 입자-슬래그 간 상호 작용에 대한 모델링 (Modeling of Solid Particle-Slag Interactions in Entrained Gasification Reactor)

  • 지준화;김기태;김성철;정재화;주지선;김의식
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.686-698
    • /
    • 2011
  • Mathematical models for char-slag interaction and near-wall particle segregation developed by Montagnaro et. al. were applied to predict various aspects of coal gasification in an up-flow entrained gasifier of commercial scale. For this purpose, some computer simulations were performed using gPROMS as the numerical solver. Typical design parameters and operating conditions of the commercial gasifiers were used as input values for the simulation. Development of a densely dispersed phase of solid carbon was found to have a critical effect on both carbon conversion and ash flow behavior. In general, such a slow-moving phase was turned out to enhance carbon conversion by lengthening the residence time of char or soot particles. Furthermore, it was also found that guiding the transfer of char or soot into the closer part of the wall to coal burner is favorable in terms of gasification efficiency and vitrified ash collection. Finally, to a certain degree densely dispersed phase of carbon showed an yield-enhancing effect of syngas.