• Title/Summary/Keyword: Dispersed Power Sources

Search Result 28, Processing Time 0.024 seconds

A Study on the Optimal Planning for Dispersed Fuel Cell Generation Systems in Power Systems (전력계통에 있어서 분산형 연료전지 발전시스템의 최적 도입계획에 관한 연구)

  • Rho, Dae-Seok;Shim, Hun;Oh, Yong-Taek;Choi, Jae-Seok;Cha, Jun-Min
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.6
    • /
    • pp.265-274
    • /
    • 2001
  • Recently, the operation of power systems has become more difficult because the peak demand load is increasing continuously and the daily load factor is getting worse and worse. Also, the consideration of deregulation and global environment in electric power industry is required. In order to overcome those problems, a study on the planning and operation in power systems of dispersed generating sources such as fuel cell systems, photovoltaic systems and wind power systems, has been performed energetically. This paper presents a method for determining an optimal operation strategy of dispersed co-generating sources, especially fuel cell generation systems, considering thermal supply as well as electric power supply. In other words, the optimal operation of those sources can be determined easily by the principle of equal incremental fuel cost and the thermal merit of those sources can be also evaluated quantitatively through Kuhn-Tucker's optimal conditions. In additions, an priority method using the comparison of total cost at the peak load time interval is presented in order ot select the optimal locations of those sources. The validity of the proposed algorithms is demonstrated using a model system.

  • PDF

Optimal Planning for Dispersed Generating Sources in Distribution Systems(II) (배전계통에 있어서 열병합 분산형전원의 최적 도입계획에 관한 연구 (II))

  • Shim, Hun;Rho, Dae-Seok;Choi, Jae-Suk;Cha, Jun-Min
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.67-69
    • /
    • 2000
  • This paper deals with a method for determining an optimal operation strategy of dispersed generating sources. For effective utilization of dispersed generating sources, it is indispensable to consider their thermal merits in addition to electric power. And then the optimal operation of these sources can be determined easily by the principle of equal incremental fuel cost. This paper presents an priority method to decide the optimal location of those sources in power systems about the whole year. The validity of the proposed algorithms are demonstrated using a model system.

  • PDF

Novel Islanding Detection Method using Frequency Drift for Grid-connected PV System (계통연계형 태양광발전 시스템의 주파수 변동에 의한 새로운 고립운전 검출기법)

  • Eun Suk-Jun;;;Lee Dong-Chun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.6
    • /
    • pp.294-302
    • /
    • 2005
  • PV system's islanding occurs when the uitilty grid is removed but local sources continue to operate and provide power to local loads. Islanding is one of the serious problems in an electric power system connected with dispersed power sources. Also, this can present safety hazards and the possibility of damage to other electric equipments. If the real and reactive power of RLC load and PV system are closely matched, islanding detection by passive methods becomes difficult. This paper shows the simulation and comparision for the previous active methods and novel islanding detection method using frequency drift is proposed for grid-connected PV system.

A Study on the Optimal Operation of Fuel Cell in Power Systems (전력계통에 있어서 신에너지전원(연료전지)의 최적 운용방안에 관한 연구)

  • 노대석;홍승만;이은미
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.11a
    • /
    • pp.141-144
    • /
    • 2002
  • Recently, the operation of power distribution systems has become more difficult because the peak demand load is increasing continuously and the daily load factor is getting worse and worse. Also, the consideration of deregulation and global environment in electric power industry is required. In order to overcome these problems, a study on the planning and operation in distribution systems of dispersed generating sources such as fuel cell systems, photovoltaic systems and wind power systems has been performed energetically. This study presents a method for determining an optimal operation strategy of dispersed co-generating sources, especially fuel cell systems, in the case of both only electric power supply and thermal supply as well as electric power supply. In other words, the optimal operation of these sources can be determined easily by the principle of equal incremental fuel cost and the thermal merits is evaluated quantitatively through Kuhn-Tucker's optimal conditions. In order to select the optimal locations of those sources, an priority method using the comparison of total cost at the peak load time interval is also presented. The validity of the proposed algorithms is demonstrated using a model system.

Technical Problems and solution based on Connection of Dispersed Power System into Power Distribution System (분산형전원의 배전계통연계에 따른 기술적 과제와 대책)

  • Yoon, G.G.;Yoon, T.S.;Roh, H.N.;Park, C.H.;Kim, J.O.;Kim, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.485-487
    • /
    • 2001
  • Electric power has traditionally been supplied to the demander through power generation, its transmission, and final distribution system. It is, however, expected that the various dispersed power system will be located near demanders and act as a power source based on the efficient management of electric power demanders and the optimal utilization of substitute energy. More stable electric power and efficient utilization of various power sources can be guranteed through the connection of the dispersed power system into the existing power system. It is the purpose of this study that, in the case of the connection of dispersed power system into the existing distribution line, effects of the connection on the power quality and plans for protection of power equipments are discussed and solutions of them are proposed.

  • PDF

A Study on the Protection Method with Interconnection of Wind-Power Generation System (풍력발전시스템의 계통연계 보호방식에 관한 연구)

  • 김응상;김일동
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.216-223
    • /
    • 2002
  • Generation facilities of the power system are mainly classified into large-scale concentrated generation and small-scale dispersed generation, but generation planning of the Korea power system has been focusing on the large-scale generation so far. Recently, however, applications of dispersed generation sources including solar cell, fuel cell, wind power, etc. have been rapidly increasing and being strongly promoted, and such generation sources should be comprehensively considered in both planning and operating. Since it is not always possible that the dispersed generation alone meets all the load interconnected to it is especially when a fault occurs, interconnection into the existing utility is desirable and recommended. In relation to wind power generation systems interconnected at the low and extra high voltage levels, this paper performs the simulation and analysis of the system protection and suggests protection coordination plans on various faults which possibly occur.

A Study on the Optimal Investment Method for Distribution Systems Interconnected with Dispersed Generations (분산전원이 연계된 배전계통의 최적 설비투자 방안에 관한 연구)

  • Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2179-2185
    • /
    • 2008
  • This paper deals with the optimal investment method for distribution facilities, based on the analytical approach for the reliability assessment in distribution systems interconnected with new dispersed generations. The existing approach can estimate the expected reliability performance of distribution systems by a direct assessment of the configuration of the systems using the reliability indexes such as NDP(Non-Delivery Power) and NDE(Non-Delivery Energy). The indexes can only consider the number and configuration of the load, but can not consider the characteristics of the load which is the one of the most important factor in the investment cost for the distribution systems. Therefore, this paper presents the new performance indexes for the investment of the distribution facilities considering both the expected interruption cost for the load section and the operation characteristics of dispersed generations. The results from a case study show that the proposed methods can be a practical tool for the voltage management in distribution systems including dispersed sources.

Optimal Operation of Dispersed Generation in MicroGrid Systems (마이크로 그리드에서 분산전원의 최적 운영 방안)

  • Kim, Kyu-Ho;Rhee, Sang-Bong;Kim, Soo-Nam;Lee, Sang-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.486_487
    • /
    • 2009
  • This paper presents a method for optimal operation to improve reliability of MicroGrid systems considering load types and interruption cost. The objective functions such as power losses cost, operation cost of dispersed generations, power purchasing cost, and interruption cost are minimized for reliability improvement and efficient operation. The several indices for reliability evaluation are improved by renewable energy sources installation.

  • PDF

Optimal Planning for Dispersed Generating Sources in Distribution Systems (배전계통에 있어서 열병합 분산형전원의 최적 도입계획에 관한 기초적 연구)

  • Shim, Hun;Rho, Dae-Seok;Choi, Jae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.513-515
    • /
    • 2000
  • This paper deals with a method for determining an optimal operation strategy of dispersed generating sources considering thermal merits. The optimal operation of these sources can be determined by the principle of equal incremental fuel cost. This paper presents an optimal operation strategy using the Kuhn-Tucker's optimal conditions and also an priority method to decide the optimal location of those sources in power systems. The validity of the proposed algorithms are demonstrated using a model system.

  • PDF

A Study on the Optimal Method for Mal-function of Re-closer at the Distribution Feeders Interconnected with PV Systems (태양광발전이 연계된 배전계통의 보호기기 오동작에 대한 최적 운용방안에 관한 연구)

  • Kim, Chan-Hyeok;Park, Hyeon-Seok;Rho, Dea-Seok;Shin, Chang-Hoon;Yoon, Gi-Gab
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1512-1518
    • /
    • 2009
  • Recently, new dispersed power sources such as photovoltaics, wind power, fuel cell etc. are energetically interconnected and operated in the distribution systems, as one of the national projects for alternative energy. This paper deals with the optimal countermeasures for the mal-function of protective devices at primary feeder in distribution systems when new power sources like photovoltaic (PV) systems are interconnected, based on the symmetrical components of short circuit studies. When new power sources are considered to be interconnected to distribution systems, bi-directional power flow and interconnection transformer connection of new power sources may cause the operation problems of protective devices (mainly re-closer), since new power sources can change typical characteristics of distribution systems. Therefore, this paper shows an analysis skill of the mal-functional mechanism of protective relay and proposes the optimal solution for the mal-function problem using the symmetrical components of fault analysis. And, this paper also shows the effectiveness of proposed method by the simulation at the field distribution systems.