• Title/Summary/Keyword: Disperse Dye

Search Result 159, Processing Time 0.027 seconds

The Interpretation of Dyeing Behavior of Poly(trimethylene terephthalate) Fiber with a Disperse Dye (분산염료에 의한 Poly(trimethylene terephthalate) 섬유의 염색거동의 해석)

  • 윤석한;김태경;임용진;조규민
    • Textile Coloration and Finishing
    • /
    • v.13 no.4
    • /
    • pp.249-255
    • /
    • 2001
  • To interpret the dyeing behavior of PTT fiber with C. I. Disperse Violet 1, the thermodynamic Parameters of dyeing, such as standard affinity, heat of dyeing(enthalpy change), entropy change, diffusion coefficient, and activation energy of diffusion, were obtained from isotherms and dyeing rates at various temperatures and compared with those of PET fiber. The heat of dyeing(enthalpy change) and the entropy change of PTT fiber showed smaller negative values than those of PET fiber. This means that the dye molecules in the PTT fiber are combined more loosely than in the PET fiber and that is due to the flexibility of polymer chains of PTT fiber. The diffusion coefficients of C. I. Disperse Violet 1 into the PTT fiber were larger than those for PET fiber, and the activation energy of diffusion on PTT fiber was smaller than that on PET fiber.

  • PDF

Dyeing Properties on Jacquard Fabric for Blind Using Low-melting Flame Retardant Polyester (저융점 난연 폴리에스터를 이용한 블라인드용 자카드 직물의 염색성)

  • Kim, Jeong-Hwa;Lee, Jung Soon;Lee, Sung-Young;Lee, Seung-Gu
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.38 no.3
    • /
    • pp.404-414
    • /
    • 2014
  • This study investigates the dyeability and fastness of jacquard fabric for blind using low-melting flame retardant polyester. Two types of jacquard fabric were prepared with a low-melting flame retardant polyester and regular polyester. The low-melting flame retardant polyester has a sheath and a core. The core consists of flame retardant polyester and the sheath consists of low-melting polyester. Disperse red 50 (DR 50), disperse blue 56 (DB 56), disperse yellow (DY 54) of E-type dyes and disperse 92 (DR 92), disperse blue 60 (DB 60), disperse yellow (DY 79) of S-type dyes were used and dyed on jacquard fabrics dependent of dyeing temperature and time. The fastness, dye exhaustion, color strength (K/S value), and colorimetric properties of jacquard fabrics were evaluated. The dyeability of S-type dyes were higher than E-type dyes. The experiments indicated optimum dyeability that the dyeing temperature was $110^{\circ}C$ for E-type dyes and $120^{\circ}C$ for S-type dyes for 40 minutes. The fastness to washing and light were excellent at a 4-5 grade.

A Study of Dyeability at Low Temperature on the Ultra-microfiber (해도사의 저온염색성에 대한 고찰)

  • 장지은;강민주;최재홍
    • Textile Coloration and Finishing
    • /
    • v.16 no.3
    • /
    • pp.8-13
    • /
    • 2004
  • This research aimed at scrutinizing the comparative dyeability of some disperse dyes at low temperature on ultra-microfiber polyester, islands in the sea type (0.05 denier), which has claimed utmost fastness and improved uptake of dyeing. Comparisons of dyeability, such as rate of dyeing and color depth, on ultra-microfiber polyester were evaluated by H.T. exhaust dyeing method and followed by the test of rubbing fastness. To achieve high wet fastness, some commercial disperse dyes, Terasil WW and Megacron dyes, which have been recently launched for excellent wash fastness, have been examined compared with conventional disperse dyes, C.I Disperse Red 167 and C.I Disperse Orange 30.

Organic Solvent Dyeing(III) -The Interpretation of Dyeing Behavior by Thermodynamic Parameters on Dyeing of Polyester Fiber in Alkanes as Dyeing Media- (유기용매염색(III) -Alkane류를 염색매체로 한 PET의 염색에 있어서 열역학적 파라미터에 의한 염착거동 해석-)

  • 김태경;임용진;조광호;조규민
    • Textile Coloration and Finishing
    • /
    • v.12 no.1
    • /
    • pp.52-60
    • /
    • 2000
  • In the prior studies, we reported that the dye uptakes of C. I. Disperse Violet 1 on polyester fiber in hexane and cyclohexane were higher than those in the other solvents, as the number of carbon atoms of alkanes decreased, the dye uptake increased, and the logarithmic plot of the dye uptakes vs. the solubilities of the dye showed that the dye uptakes are inversely proportional to the solubilities. In this study, for Interpretation of dyeing behavior of C. I. Disperse Violet 1 on polyester in alkanes, the thremodynamic parameters of dyeing, such as standard affnity, heat of dyeing(enthalpy change), entropy change, diffusion coefficient, and activation energy of diffusion, were obtained from isotherms and dyeing rates at different temperature. As the number of carbon atoms of alkanes increased, the standard affinity decreased, but the heat of dyeing(enthalpy change) and the entropy change showed larger negative values. These results mean that as the number of carbon atoms of alkanes increases, the dye uptake decreases, but both the fraction of the dye molecules dyed at relatively highly aligned or compact region of polyester fiber and the regularity of dye aggregates in the fiber become increased. As the number of carbon atoms of alkanes increased, the diffusion coefficient decreased, but the activation energy of diffusion increased. In the alkane of larger number of carbon atoms, because the solubility of the dye is higher, the desorption rate of the dye is faster and the diffusion coefficient is smaller than those in the smaller alkanes. But the energy required to separate the dye molecules from the alkane molecules is much higher because the interaction between the alkane molecule and the dye molecule become strong with the number of carbon atoms.

  • PDF

Effect of Denier and Dyestuff Structure on Washing Fastness of Polyester Fabric (섬도와 염료구조가 폴리에스테르 직물의 세탁견뢰도에 미치는 영향)

  • 강연희;백지연;이재웅;김삼수;허만우;이난형
    • Textile Coloration and Finishing
    • /
    • v.13 no.3
    • /
    • pp.180-187
    • /
    • 2001
  • Generally, polyester microfiber has much greater dye uptake than that of regular ones. In spite of high dye up-take visual shade depth of dyed fabric decreases with smaller denier, which results in poor washing fastness of dyed fabric. In this study, in order to investigate the washing fastness, polyester microfiber fabric was dyed by using two type of disperse dyes and treated with 3 different reduction clearing methods. The reduction clearing methods in this study are normal alkaline reduction clearing, $N_2$ gas replacement method, and ultrasonic treatment during reduction clearing. The results were as followings ; The most important factors affecting the washing fastness of polyester artificial suede fabric were found to be the reduction clearing method, the chemical structure of used disperse dyes and the structure and denier of fibers. It was also obtained that the heat treatment of dyed fabric decreased the washing fastness due to the dye migration from inner phase to surface.

  • PDF

The Interpratation of Dyeing Behavior of the Easily Dyeable Polyester Yarn under Atmospheric Pressure by Thermodynamic Parameters (열역학적 파라미터에 의한 상압가염형 폴리에스테르 섬유의 염색거동 해석)

  • 김태경;윤석한;신상엽;임용진;조규민
    • Textile Coloration and Finishing
    • /
    • v.14 no.1
    • /
    • pp.51-57
    • /
    • 2002
  • In the prior study, the mechanical properties and the dyeability of the easily dyeable polyester grim(EDY) were investigated. In this study, to interpret the dyeing behavior of EDY with C. I. Disperse Violet 1, the thermodynamic parameters of dyeing, such as the standard affinity, the heat of dyeing(the enthalpy change), the entropy change, the diffusion coefficient, and the activation energy of diffusion, were obtained from adsorption isotherms and dyeing rate at various temperatures and compared to these of regular polyester (REG-PET). The heat of dyeing(the enthalpy change) and the entropy change for EDY showed smaller negative values than those for REG-PET. This means that the dye molecules in the EDY are combined more loosely than in the REG-PET and that is due to the flexibility of polymer chains of EDY. The diffusion coefficients of C. I. Disperse Violet 1 into the EDY were larger than those for REG-PET, and the activation energy of diffusion on EDY was smaller than that on REG-PET.

A Study on the Dyeing of PTT(polytrimethylene terephthalate)/Silk Mixture Fabrics with Disperse Dyes/Acid Dyes (분산염료/산성염료에 의한 PTT(polytrimethylene terephthalate)/견 교직물의 염색에 관한 연구)

  • Sung, Woo-Kyung
    • Fashion & Textile Research Journal
    • /
    • v.12 no.1
    • /
    • pp.94-102
    • /
    • 2010
  • The dyeing of poly(trimethylene terephthalate)(PTT)/silk mixture fabrics can be accomplished by a two bath dyeing method with separate application of the disperse dyes on the PTT, reduction cleaning of the stained silk and then dyeing the silk with the acid dyes, or by one bath dyeing method with mixed dye ranges, possibly followed by a cleaning treatment. The two bath dyeing method has the advantage of better results with respect to dry cleaning fastness properties thanks to the possibility of an intermediate reduction clear. On the other hand, as compared with the two bath dyeing method, one bath dyeing method with a mixed dye range permits rapid and more reproducible dyeing, without the risk of great difference with respect to the shade of the strike on both substrates as well as savings of time, energy and water usage. This study was carried out to investigate dyeing characteristics of PTT/silk mixture fabrics with disperse dyes/acid dyes by one bath dyeing method in comparison with two bath dyeing method in the interests for rationalization of the dyeing process.

Quantitative Analysis of Relative Adsorption of Disperse Dyes on Polyurethane in Polyurethane-impregnated Polyester Microfibers (폴리우레탄함침 폴리에스터 극세사 소재의 분산염료 염색시 폴리우레탄 성분에 대한 염료의 상대염착률 정량분석)

  • Jun, Heejeong;Park, Suhyeon;Lee, Junheon;Kim, Taekyeong
    • Textile Coloration and Finishing
    • /
    • v.32 no.3
    • /
    • pp.121-127
    • /
    • 2020
  • The analysis method of relative adsorption of disperse dyes on impregnated polyurethane resin and polyester fiber separately was investigated. The solvents for extracting the dyes from polyurethane resin and polyester fiber were determined by acetone and DMF, respectively. By extracting the dyed fibers with acetone at room temperature within 30 minutes, the dyes adsorbed only on the polyurethane resin could be extracted. And then by additional extracting the same fabrics with DMF at 95℃ for longer than 1 hour, the dyes adsorbed on polyester fabrics was extracted. This means that the dyes adsorbed on polyurethane and polyester could be extracted separately and that relative adsorption of the dyes on the both components could be analyzed quantitatively. Using this analysis method, the relative adsorption of a disperse dye was investigated after reduction clearing with various conditions.

The Analysis of the Micro-structure of Oxygen Plasma Treated PET Using a Nitrogen Porosimeter (Nitrogen Porosimeter를 이용한 산소 플라즈마 처리 PET의 미세구조 분석)

  • 김병인;김태경;조규민;임용진
    • Textile Coloration and Finishing
    • /
    • v.11 no.6
    • /
    • pp.1-6
    • /
    • 1999
  • The porosities of PET fibers were investigated using a nitrogen porosimeter according to oxygen plasma treatment and dyeing with a disperse dye, and they were discussed in terms of the change of internal micro-structure of the PET fiber. The total pore volume, surface area and average pore size of the plasma treated PET fibers increased expectably compared with the untreated sample. The PET fibers treated with oxygen plasma and then dyed with a disperse dye were increased significantly in the surface area and the total pore volume comparing with those of plasma treated only, but decreased in the average pore size. The increase of the surface area, after dyeing, of the plasma treated PET fibers was due to addition of the surface area of the dye itself to that of the PET fiber. The increase of the total pore volume of the plasma treated PET fibers by dyeing, which is the opposite result to the general idea that the pore volume of fibers would be reduced by occupation of dye molecules in the pores, could be explained by the free-volume model. This is that the amorphous region in the fiber expanded by occupation of dye molecules, and the marginal space surrounding dyes was generated as many smaller pores, and the decrease of the average pore size of the dyed sample also could be explained The decrease of the average pore size was caused by the splitting of a larger pore into smaller pores.

  • PDF