• Title/Summary/Keyword: Dislocation density

Search Result 222, Processing Time 0.034 seconds

Characteristics of Barkhausen Noise Properties and Hysteresis Loop on Tensile Stressed Rolled Steels

  • Kikuchi, Hiroaki;Ara, Katsuyuki;Kamada, Yasuhiro;Kobayashi, Satoru
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.427-430
    • /
    • 2011
  • The rolled steels for welded structure applied tensile stress have been examined by means of magnetic Barkhausen noise (MBN) method and of a physical parameter obtained from a hysteresis loop. The behaviors of MBN parameters and coercive force with tensile stress were discussed in relation to microstructure changes. There is no change in MBN parameters and coercive force below yield strength. The coercive force rises rapidly with tensile stress above yield strength. On the other hand, the rms voltage and the peak in averaged rms voltage take a maximum around yield strength and then decreases. The magnetomotive force at peak in the averaged rms voltage shows a minimum around yield strength. These phenomena are attributed to the combined effects of cell texture and dislocation density. In addition, the behaviors of MBN parameters around yield strength may be reflected by the localized changes in strain field due to the formation of dislocation tangles.

GaAs on Si substrate with dislocation filter layers for wafer-scale integration

  • Kim, HoSung;Kim, Tae-Soo;An, Shinmo;Kim, Duk-Jun;Kim, Kap Joong;Ko, Young-Ho;Ahn, Joon Tae;Han, Won Seok
    • ETRI Journal
    • /
    • v.43 no.5
    • /
    • pp.909-915
    • /
    • 2021
  • GaAs on Si grown via metalorganic chemical vapor deposition is demonstrated using various Si substrate thicknesses and three types of dislocation filter layers (DFLs). The bowing was used to measure wafer-scale characteristics. The surface morphology and electron channeling contrast imaging (ECCI) were used to analyze the material quality of GaAs films. Only 3-㎛ bowing was observed using the 725-㎛-thick Si substrate. The bowing shows similar levels among the samples with DFLs, indicating that the Si substrate thickness mostly determines the bowing. According to the surface morphology and ECCI results, the compressive strained indium gallium arsenide/GaAs DFLs show an atomically flat surface with a root mean square value of 1.288 nm and minimum threading dislocation density (TDD) value of 2.4×107 cm-2. For lattice-matched DFLs, the indium gallium phosphide/GaAs DFLs are more effective in reducing the TDD than aluminum gallium arsenide/GaAs DFLs. Finally, we found that the strained DFLs can block propagate TDD effectively. The strained DFLs on the 725-㎛-thick Si substrate can be used for the large-scale integration of GaAs on Si with less bowing and low TDD.

A Study on Secondary Defects in Silicon after 2-step Annealing of the High Energy $^{75}AS^+$ Ion Implanted Silicon (고에너지비소 이온 주입후 2단계 열처리시 2차결함에 대한 연구)

  • 윤상현;곽계달
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.796-803
    • /
    • 1998
  • Intrinsic and proximity gettering are popular processes to get higher cumulative production yield and usually adopt multi-step annealing and high energy ion implantation, respectively. In order to test the combined processed of these, high energy \ulcornerAs\ulcorner ion implantation and 2-step annealing process were adopted. After the ion implantation followed by 2-step annealing, the wafers were cleaved and etched with Wright etchant. The morphology of cross section on samples was inspected by FESEM. The concentration profile of As was measured by SRP. The location and type of secondary defects inspected by HRTEM were dependent on the 1st annealing temperatures. That is, a line of dislocation located at $1.5mutextrm{m}$ apart from the surface at $600^{\circ}C$ lst annealing was changed to some dislocation lines or loops nearby the surface at 100$0^{\circ}C$. The density of dislocation line was reduced but the size of the defects was enlarged as the temperature increased.

  • PDF

Structural defects in the multicrystalline silicon ingot grown with the seed at the bottom of crucible (종자결정을 활용한 다결정 규소 잉곳 내의 구조적 결함 규명)

  • Lee, A-Young;Kim, Young-Kwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.190-195
    • /
    • 2014
  • Because of the temperature gradient occurring during the growth of the ingot with directional solidification method, defects are generated and the residual stress is produced in the ingot. Changing the growth and cooling rate during the crystal growth process will be helpful for us to understand the defects and residual stress generation. The defects and residual stress can affect the properties of wafer. Generally, it was found that the size of grains and twin boundaries are smaller at the top area than at the bottom of the ingot regardless of growth and cooling condition. In addition to that, in the top area of silicon ingot, higher density of dislocation is observed to be present than in the bottom area of the silicon ingot. This observation implies that higher stress is imposed to the top area due to the faster cooling of silicon ingot after solidification process. In the ingot with slower growth rate, dislocation density was reduced and the TTV (Total Thickness Variation), saw mark, warp, and bow of wafer became lower. Therefore, optimum growth condition will help us to obtain high quality silicon ingot with low defect density and low residual stress.

Stimulated Emission with 349-nm Wavelength in GaN/AlGaN MQWs by Optical Pumping

  • Kim, Sung-Bock;Bae, Sung-Bum;Ko, Young-Ho;Kim, Dong Churl;Nam, Eun-Soo
    • Applied Science and Convergence Technology
    • /
    • v.26 no.4
    • /
    • pp.79-85
    • /
    • 2017
  • The crack-free AlGaN template has been successfully grown by using selective area growth with triangular GaN facet. The triangular GaN stripe structure was obtained by vertical growth rate enhanced mode with low growth temperature of $950^{\circ}C$ and high growth pressure of 500 torr. The lateral growth rate enhanced mode of AlGaN for crack-free and flat surface was also investigated. Low pressure of 30 torr and high V/III ratio of 4400 were favorable for lateral growth of AlGaN. It was confirmed that the $4{\mu}m$ -thick $Al_{0.2}Ga_{0.8}N$ was crack-free over entire 2-inch wafer. The dislocation density of $Al_{0.2}Ga_{0.8}N$ was as low as ${\sim}7.6{\times}10^8/cm^2$ measured by cathodoluminescence. Based on the high quality AlGaN with low dislocation density, the ultraviolet laser diode epitaxy with cladding, waveguide and GaN/AlGaN multiple quantum well (MQW) was grown by metalorganic chemical vapor deposition. The stimulated emission at 349 nm with full width at half maximum of 1.8 nm from the MQW was observed through optical pumping experiment with 193 nm KrF laser. We also have fabricated the deep ridge type ultraviolet laser diode (UV-LD) with $5{\mu}m-wide$ and $700{\mu}m-long$ cavity for electrical properties. The turn on voltage was below 5 V and the resistance was ${\sim}55{\Omega}$ at applied voltage of 10 V. The amplified spontaneous emission spectrum of UV-LD was also observed from pulsed current injection.

The Effect of Microstructural Evolution on Corrosion Property of Ti Plate with Heat Treatment (열처리에 따른 미세구조 변화가 Ti 판재의 부식특성에 미치는 영향)

  • Kim, Min Gyu;Lee, Chan Soo;Kim, Tae Gyu;Kim, Hye Sung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.1
    • /
    • pp.12-17
    • /
    • 2018
  • We investigated the corrosion behavior of commercially pure cold working processed (CP)-Ti with coarse-grained (CG) microstructure heat-treated at $400^{\circ}C$ and $600^{\circ}C$, respectively. It is observed that corrosion resistance of as-received CP-Ti heat-treated at $400^{\circ}C$, at which recrystallization proceeds, is largely improved. Interestingly, the mechanical property of CP-Ti sample at $400^{\circ}C$ was scarcely deteriorated. It is attributed to the decrease of the defects such as strain variance and dislocation density. On the other hand, the annealing treatment at $600^{\circ}C$ of CP-Ti plate causes to grain growth with the noticeable reduction of mechanical property. Hence, it is considered that defect density such as strain and dislocation density is important microstructural parameter for the improvement of corrosion resistance. The introduction of proper annealing treatment can help to improve corrosion resistance without scarifying mechanical property of CP-Ti.

Dislocation in Semi-infinite Half Plane Subject to Adhesive Complete Contact with Square Wedge: Part II - Approximation and Application of Corrective Functions (직각 쐐기와 응착접촉 하는 반무한 평판 내 전위: 제2부 - 보정 함수의 근사 및 응용)

  • Kim, Hyung-Kyu
    • Tribology and Lubricants
    • /
    • v.38 no.3
    • /
    • pp.84-92
    • /
    • 2022
  • In Part I, developed was a method to obtain the stress field due to an edge dislocation that locates in an elastic half plane beneath the contact edge of an elastically similar square wedge. Essential result was the corrective functions which incorporate a traction free condition of the free surfaces. In the sequel to Part I, features of the corrective functions, Fkij,(k = x, y;i,j = x,y) are investigated in this Part II at first. It is found that Fxxx(ŷ) = Fxyx(ŷ) where ŷ = y/η and η being the location of an edge dislocation on the y axis. When compared with the corrective functions derived for the case of an edge dislocation at x = ξ, analogy is found when the indices of y and x are exchanged with each other as can be readily expected. The corrective functions are curve fitted by using the scatter data generated using a numerical technique. The algebraic form for the curve fitting is designed as Fkij(ŷ) = $\frac{1}{\hat{y}^{1-{\lambda}}I+yp}$$\sum_{q=0}^{m}{\left}$$\left[A_q\left(\frac{\hat{y}}{1+\hat{y}} \right)^q \right]$ where λI=0.5445, the eigenvalue of the adhesive complete contact problem introduced in Part I. To investigate the exponent of Fkij, i.e.(1 - λI) and p, Log|Fkij|(ŷ)-Log|(ŷ)| is plotted and investigated. All the coefficients and powers in the algebraic form of the corrective functions are obtained using Mathematica. Method of analyzing a surface perpendicular crack emanated from the complete contact edge is explained as an application of the curve-fitted corrective functions.

Tensile Behavior Characteristics of CANDU Pressure Tube Material Degraded by Neutron Irradiations (중수로 압력관 재료의 조사 열화에 따른 인장거동 특성)

  • An, Sang-Bok;Kim, Yeong-Seok;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.188-195
    • /
    • 2002
  • To investigate the degradation of mechanical properties induced mainly by neutron irradiation, the tensile tests were conducted from room temperature to 300\\`c using the irradiated and the unirradiated Zr-2.5Nb pressure tube materials. The irradiated longitudinal and transverse specimens were collected from the coolant inlet, middle, and outlet parts of M-11 tube which had been operated in Wolsung CANDU Unit-1 and exposed to different operating temperatures and irradiation fluences. The different tensile behavior was characterized not by the fluences of irradiation but by the tensile loading direction. The transverse specimen showed the higher strength and lower elongation than those of the longitudinal one. It was believed that these phenomena resulted from the microstructure anisotropy caused by the extrusion process. The increased strength hardening and decreased elongation embrittlement of the irradiated material were compard to those of the unirradiated one. While the tensile strength of the inlet was higher than that of the outlet, the elongation of the inlet was lower than that of outlet. Considering the operation condition, it was proposed that the operating temperature could be a more effective parameter than the irradiation fluence for long-time life. Through the TEM observation, it was found that while the a-type dislocation density was increased, the c-type dislocation was not changed in the irradiated. The fact that the higher dislocation density was sequentially distributed over the inlet, the middle, and the outlet parts was consistent with the distribution of the tensile strength.