• Title/Summary/Keyword: Disk shape

Search Result 349, Processing Time 0.027 seconds

A Study on Quantitiative visualization of Vibration Mode Shape of Disk Brake by Using Stroboscopic ESPI (스트로보스코픽 전자 스페클 패턴 간섭법을 이용한 디스크 브레이크의 진동 모드의 정량적 가시화에 관한 연구)

  • 강영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.97-104
    • /
    • 1999
  • Brake squeal noise has been a problem since the early days of motoring . It is important to obtain vibration mode shape for reduction of brake noise . Stroboscopic Electronic Speckle Pattern Interferometry is a very powerful measuring method for study of vibrating objects in static state compared with conventional methods because this method can give both resonance frequency and quantitative visualization of vibration mode shape at the same time. In this paper, we performed qualitative visualization and quantitative analysis of vibration mode shpae of disk brake by using stroboscopic ESPI and phase shifting method. The stroboscopic wavefronts are obtained by chopping continuous wave laser beam using acousto-optic modulator .Experiments were performed at the same constraint conditions as disk brake of the practical vehicle as far as possible. The experimental results of this paper show quantitative measurement of vibration mode shape and quantiative visualization of vibration amplitude of disk brake with 3D plotting.

  • PDF

Design and Experiment investigation of disk bump to improve unload performance in HDD (HDD에서 언로드 성능향상을 위한 디스크 범프의 설계 및 실험 연구)

  • Lee, Hyung-Jun;Lee, Yong-Hyun;Park, Gyeong-Su;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.833-836
    • /
    • 2007
  • Load/Unload technology has more benefits than the conventional CSS technology. However, it remains unsolved technical problem on the unloading process. While the slider climbs up the ramp at the outer edge of the disk, the possibility of the slider-disk contact by lift-off force and rebound of the slider increases. This paper focuses on no slider-disk contact. To prevent the slider-disk contact, we apply the disk bump on disk outer edge proceeding unload. Firstly, in the simulation, the bump dimension is determined by changing bump design parameters. Secondly, dynamic stability of slider have to be checked on disk bump before unload analysis, and unload analysis is performed by applying stable bump shapes to unload simulation. Thirdly, we select optimal bump shape to improve unload performance by unload analysis. Finally, in the experiment, the disk bump is mechanically manufactured by pressing disk surface using diamond tip. That is variously processed by changing pressing pressure. After confirming bump shape by nano-scanner, proper bump shape is applied to real experimental unload process. Through this investigation, we propose the optimal bump design to prevent the slider-disk contact, and then we can realize improved unloading performance.

  • PDF

A Study on Shape Design Approach of Disk Cams using Relative Velocity of Followers (종동절의 상대속도를 이용한 원반 캠의 형상 설계법에 관한 연구)

  • 신중호;강동우;김종수;김대원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.185-192
    • /
    • 2000
  • Cam mechanism is one of the common devices used in many automatic machinery. Since the motion of the cam mechanism depends on the shape of the cam and the type of the follower, the shape design procedure must be well defined in order to determine the accurate shape of the cam corresponding to the prescribed motion of the follower. This paper proposes a new approach for designing the shape of disk cams. The proposed relative velocity method uses the relative velocity at center of the follower roller or at contact point between the cam and the follower for 4 different types of the disk cam systems. Also, the relative velocity method for determining the cam profile uses the geometric relationships of the cam and the follower.

  • PDF

Study on the Closed-die Forging Process for Turbine Disk of Small Gas Turbine Engine (소형 가스터빈용 터빈 디스크의 형단조 공정 연구)

  • Kim, D.K.;Kim, Y.D.;Kim, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.427-430
    • /
    • 2007
  • Gas turbine disk components have been used by Ni-base superalloys which have high temperature strength for enduring stress induced by high speed rotation. This study introduced the overview of development strategy of precision forging of turbine disk and closed-die forging process for manufacturing good quality gas turbine disk. To make superior quality turbine disk, it is important to select optimal forging process conditions like preform shape, die shape and forging temperature etc. In this paper, closed-die forging process has been studied through the rigid-plastic finite element simulation. Proposed forging process can be used for the successful manufacturing of small-size gas turbine disk.

  • PDF

Fabrication and Experimental Research of the Disk Bump to Improve the Unloading Performance (언로드 성능 형상을 위한 디스크 범퍼의 제작 및 실험 연구)

  • Lee, Yong-Eun;Lee, Yong-Hyun;Lee, Hyung-Jun;Park, No-Cheol;Park, Kyung-Su;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1276-1279
    • /
    • 2007
  • The main objectives of the Load/Unload are no slider-disk contact and no media damage. But, it remains unsolved technical problems on the unloading process. While the slider climbs up the ramp at the outer edge of the disk, the possibility of the slider-disk contact by lift-off force and rebound of the slider increases. Keeping in mind of these points, to prevent the slider-disk contact, we apply the disk bump on disk outer edge proceeding unload. First, referring to the simulation results, we select the optimal bump shapes to improve unload performance by unload analysis. Second, the disk bump is mechanically manufactured by pressing disk surface using tungsten tips. The bumps are variously processed by changing pressing pressure of tungsten tips. After confirming bump shape by nano-scanner, the optimal bump shape is applied to experimental unload process. Through this experiment, it is conformed that the unload performance was improved by using the optimal disk bump to prevent the slider-disk contact.

  • PDF

Die-Speed Optimization in Titanium-Disk Near-Net Shape Hot-Forging (티타늄디스크 근사정형 열간단조시 금형속도의 최적화)

  • 박종진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.896-907
    • /
    • 1995
  • Titanium 6242(.alpha. + .betha.) alloy has a good strength/weight ratio and is used for aircraft components such as engine disks and compressor blades. When this material is forged at an elevated temperature, the process parameters should be carefully controlled because the process window of this material is quite narrow. In the present investigation, a rigid-thermoviscoplastic finite element method is used to predict the deformation behavior and temperature/strain distributions in an engine disk during near-net shape hot forging. The purpose of the investigation is to obtain a proper ram speed profile, assuming the hydraulic press used in the forging is capable of varying ram speed during loading. In result, it was found that the ram speed at constant strain-rate of 0.5/sec shows a sound deformation behavior, a relatively uniform deformation and a good temperature distribution. This information is also valuable in predicting resulting microstructures in the disk.

Finite Element Analysis of Windmill Type Ultrasonic Motors Depend on the Shape of Ceramics (세라믹 형상에 따른 풍차형 초음파 모터의 유한요소해석)

  • Lee, Jae-Hyung;Park, Tae-Gone;Kim, Myung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.674-677
    • /
    • 2002
  • In this paper, two kinds of windmill type motors which have a disk shape and a ring shape piezoelectric ceramics were studied. And characteristics of two models were compared with each others. A windmill type ultrasonic motor is composed of a stator, a rotor, and a ball bearing. The stator is made of a piezoelectric ceramics and two metals endcaps. When the piezoelectric ceramics vibrate, displacement of torsonal vibration appear at metal endcaps. The motor with 11.0[mm] diameter was studied by finite element analysis. The voltage of 100[V] was supplied at each model. Resonance frequency of 206.875[KHz] was obtained at the disk type, but ring type was 137.562[KHz]. The maximum torsonal displacement of $1.112[{\mu}m]$ was obtained at the disk type, but ring type was $1.698[{\mu}m]$.

  • PDF

Analysis of Disk Filter Head Losses due to the Shapes of Disk Grooves in Drip Irrigation System (점적관개용 디스크 여과기의 디스크 홈 단면 형상에 따른 수두 손실 특성 분석)

  • Jung, Seung-Yeon;Choi, Won;Choi, Jin-Yong;Kim, Maga;Lee, Yoonhee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.25-36
    • /
    • 2018
  • Drip irrigation system is a low energy cost method which can efficiently save and supply water by dropping water slowly on the crop's root zone during crop growth. In the drip irrigation system, disk filters take an important role to physically remove impurity (inorganic and suspended organic) particles present in agricultural water which can cause emitter clogging. For the purpose, both top-and-bottom surfaces of the disk are grooved in micron size flowing from outside to inside. However, many congested flow paths in disk filter media incur higher head loss of inflow water resulting in relatively decreasing velocities depending on operation time than sand and mesh filters. Therefore, it is important to optimize the structure of disk filter in micro irrigation system. The head loss of disk filter media takes also charge of more than 60 % of total head loss in whole disk filter. This study is to find the appropriate cross-sectional shape of the disk groove to minimize the head loss by executing the experiment. The experiment used three disk filters that have similar filter body but have a half-elliptic and two kinds of triangular cross sections. The experimental results showed that the disk filter with half-elliptic cross sections of disk grooves have less head loss than the disk filter with regular triangular one.

Computational Design of a Disk-Shape Boundary-Layer Pump (원반형 경계층 펌프의 전산 설계)

  • Jeong, S.Y.;Chang, S.M.;Yang, J.S.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.12-17
    • /
    • 2010
  • A kind of disk-shape boundary layer pump is designed numerically by using a software of computational fluid dynamics, which is widely used for the special purposes such as artificial hearts, bio-fluidics and transportation of oceanic lives, etc. From the numerical simulation with an axisymmetric model, some benchmark problems are tested and compared with experimental results. The performance of disk pump is graphically visualized from the computational results, and converted to the dimensionless parameters. Finally, the obtained numerical data in the present investigation can be used for the baseline for new design to achieve a more efficient disk pump.

Powder Production of CuAINi Base Alloy via Rotating Disk Atomization (회전원반분사법에 의한 CuA1Ni계 합금 분말제조)

  • 류봉선
    • Journal of Powder Materials
    • /
    • v.1 no.2
    • /
    • pp.145-152
    • /
    • 1994
  • Atomizing mode and powder characteristics of CuA1Ni base shape memory alloy in rotating disk atomization were investigated in accordance with disk materials and additional elements. Produced powders were classified into two types of spherical and flake shape. In the case of CuAlNiBTi and CuAlNiZr alloy, high yield rate and fine powder were obtained. This tendency was same when we used oxide coated disks. We concluded that this results were steno from the wetting characteristics change between molten metal and disk surface. Especially, due to the reactive properties of Ti and Zr with ceramic disk, the change of atomizing appearance and powder characteristics were noticeable.

  • PDF