• Title/Summary/Keyword: Disk friction loss

Search Result 34, Processing Time 0.029 seconds

Performance Prediction of Centrifugal Compressors (원심 압축기의 성능 예측)

  • 오형우;정명균
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.136-148
    • /
    • 1997
  • The present study has been carried out to develop a computational procedure for the analysis of the off-design performance in centrifugal compressors with vaneless diffusers by integrating empirical loss models and analytical equations. Losses in centrifugal compressors stem from a number of sources and their exact calculation is not yet possible. This study investigates several modeling schemes and shows that a fairly good prediction can be achieved by a proper selection of the most important flow parameters resulting form a meanline one-dimensional analysis. The performance maps for compressors are calculated and compared with measured performance maps. The off-design performance characteristics in terms of the pressure ratio vs. mass flow produced have generally correct forms. However, no universal means have been found to predict accurately the onset of surge. The prediction method developed through this study can serve as a tool to ensure good matching between parts and it can assist the understanding of the operational characteristics of general purpose centrifugal compressors.

  • PDF

A Study on Wear loss of Motorcycle Brake Disk by Response Surface Method (반응 표면법을 이용한 이륜자동차 브레이크 디스크 마멸량에 관한 연구)

  • Jeon, H.Y.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.44-49
    • /
    • 2008
  • In this research, I would like to choose sliding distance and ventilated hole number which affect to the amount of wear of disk and pad as experiment conditions of 'the amount of wear' through wear test of motorcycle brake disk. Also, I analyze the amount of wear according to the variation of coefficient of friction by using design of experiment that is being widely used in diverse areas. With the tests of least, I present the correlation of each experiment condition. Therefore, I analyzed the variation of the amount of wear of disk and pad according to test factors such as ventilated hole number, applied load, sliding speed, and sliding distance in wear test of motorcycle brake disk by applying the design of experiment. Also, I analyzed quantitatively the influence of test factors through Taguchi Robust experimental design, response surface and examined the most suitable level and estimation of the amount of wear of disk. From these, I reached the following conclusions. response surface design, mathematical model was constructed about amount of wear of disk and pad. The amount of wear that decrease according to increase of ventilated hole number, and it's increase according to Increase of applied load, sliding speed, and sliding distance.

  • PDF

Analysis of Power Loss of an Optical Disc Drive due to the Tilting Motion of a Rotating Disc (ODD 회전 디스크의 틸팅 각운동에 의한 소모전력 해석)

  • Chong, H.Y.;Sung, S.J.;Jang, G.H.
    • Transactions of the Society of Information Storage Systems
    • /
    • v.6 no.2
    • /
    • pp.57-62
    • /
    • 2010
  • This paper measured and analyzed the source of total power loss of an ODD of a notebook computer. It shows that the biggest power loss is the windage loss due to the friction between rotating disk and surrounding air. It measured the power loss by the tilting motion of a rotating disc which is originated from the unbalanced mass of the rotating disc or the squareness between case-rotor and shaft. The power loss of rotating disc due to tilting motion was also calculated by using FLUENT, and it was correlated with the measured one. This paper shows that the one of the effective methods to reduce the power loss of an ODD is to reduce the tilting motion of a rotating disc.

A Study on the Development and Application of a Design Program for Centrifugal Turbo Fan (원심 터보홴 설계용 프로그램의 개발 및 응용에 대한 연구)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.71-79
    • /
    • 2016
  • This paper introduces the design method of the centrifugal turbo fan and the process of developing the design program of it. The developed design program confirmed the applicability by experimental performance data. Here, we proposed new velocity coefficients and considered various losses such as impeller inlet loss, vane passage flow loss, casing pressure loss, recirculation loss power, and disk friction loss power. Especially, the inlet and outlet widths of the impeller were newly determined by reflecting the experimental results. As a result, this fan design program shows a good performance result regardless of the types of impeller and is expected to be a very useful design tool.

Frictional Characteristics of Silicon Graphite Lubricated with Water at High Pressure and High Temperature (고온 고압에서 물로 윤활되는 실리콘그라파이트 재질의 마찰 특성에 관한 연구)

  • Lee, Jae-Seon;Kim, Eun-Hyun;Park, Jin-Seok;Kim, Jong-In
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.151-156
    • /
    • 2001
  • Experimental frictional and wear characteristics of silicon graphite materials is studied in this paper. Those specimens are lubricated with high temperature and highly pressurized water to simulate the same operating condition for the journal bearing and the thrust bearing on the main coolant pump bearing in the newly developing nuclear reactor named SMART(System-integrated Modular Advanced ReacTor). Operating condition of the bearings is realized by the tribometer and the autoclave. Friction coefficient and wear loss are analyzed to choose the best silicon graphite material. Pin on plate test specimens are used and coned disk springs are used to control the applied force on the specimens. Wear loss ana wear width are measured by a precision balance and a micrometer. The friction force is measured by the strain gauge which can be used under high temperature and high pressure. Three kinds of silicon graphite materials are examined and compared with each other, and each material shows similar but different results on frictional and wear characteristics.

  • PDF

Off-design Performance Prediction of Centrifugal Pumps by Using TEIS model and Two-zone model (TEIS 모델과 두 영역 모델을 이용한 원심 펌프의 탈 설계 성능 예측)

  • Yoon, In-Ho;Baek, Je-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.574-579
    • /
    • 2000
  • In this study. an off-design performance prediction program for centrifugal pumps is developed. To estimate the losses in an impeller flow passage, two-zone model and two-element in series(TEIS) model are used. At impeller exit. the mixing process occurs with an increase in entropy. In two-zone model. there are both primary zone and secondary zone for an isentropic core flow and an average of all non-isentropic streamtubes respectively. The level of the core flow diffusion in an impeller was calculated by using TEIS model. While internal losses in an impeller an automatically estimated by using the above models, some empirical correlations far estimating external losses. far example, disk friction loss, recirculation loss and leakage loss are used. In order to analyze the vaneless diffuser flow. the momentum equations for the radial and tangential directions are used and solved together with continuity and energy equations.

  • PDF

A Experimental Study on Wear Characteristics of Cu Alloy for Piston Head and Bush Material of Hydraulic Servo Cylinder (유압 서보실린더의 동합금 피스톤 헤드와 부시의 마멸특성에 관한 실험적 연구)

  • Cho, Yon-Sang;Kim, Young-Hee;Byon, Sang-Min;Park, Heung-Sik
    • Tribology and Lubricants
    • /
    • v.25 no.5
    • /
    • pp.330-334
    • /
    • 2009
  • Hydraulic servo cylinders have been used to control accurately a large machine in power plant. Especially, Piston head and bush of servo cylinder is assembled sleeve and piston head and bush made of Cu alloy and pad sealing part. A damages of sleeve and piston head, bush are caused by friction and wear. Thus, It is necessary to examine friction and wear characteristics of Cu alloys for the piston head and bush. In this study, to be reliable on the piston and cylinder parts, dry friction and wear experiments were carried out with Cu alloys of four kinds of AlBC, PBC, BC and BS using reciprocating friction tester of pin on disk type. From this study, the result was shown that the AlBC and PBC with alloy elements were excellent to resistance wear. As the sliding speed was increased, the wear loss of PBC decreased than another Cu alloy.

Abrasive Wear Characteristics of Materials for Diesel Engine Cylinder Liner and Piston Ring (디젤엔진 실린더 라이너-피스톤 링 소재의 연삭 마멸 특성)

  • Jang, Jeong-Hwan;Kim, Jung-Hoon;Kim, Chang-Hee;Moon, Young-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.2
    • /
    • pp.72-77
    • /
    • 2007
  • Abrasive wear between piston ring face and cylinder liner is an extremely unpredictable and hard-to-reproduce phenomenon that significantly decreases engine performance. Wear by abrasion are forms of wear caused by contact between a particle and solid material. Abrasive wear is the loss of material by the passage of hard particles over a surface. From the pin-on-disk test, particle dent test and scuffing test, abrasive wear characteristics of diesel engine cylinder liner-piston ring have been investigated. Pin-on-disk test results indicate that abrasive wear resistance is not simply related to the hardness of materials, but is influenced also by the microstructure, temperature, lubricity and micro- fracture properties. In particle dent test, dent resistance stress decreases with increasing temperature. From the scuffing test by using pin-on-disk tester, scuffing mechanisms for the soft coating and hard coating were proposed and experimentally confirmed.

Study on Tribological Characteristics of Machine Component in Boundary Lubrication (경계윤활에서 기계 부품 소재의 트라이볼로지적 특성에 관한 연구)

  • Kim, Myeong-Gu;Seo, Kuk-Jin;Nam, Jahyun;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.356-361
    • /
    • 2019
  • The friction and wear between machine components directly influence the energy loss and failure in various machines. Therefore, there is always a demand for finding methods to reduce friction and wear. Of the possible methods, lubrication is a widely used method for reducing friction and wear. In the case of lubrication, it is important to analyze the tribological behavior in the boundary lubrication because most of friction and wear occurs in the boundary lubrication regime. Cast iron has been regarded as a good material for industrial applications due to the excellent mechanical properties and high productivity. Especially, nodular cast iron is a material that shows better mechanical properties and wear-resistance compared with cast iron due to inclusion of spheroidal graphite. In this work, we investigated the tribological characteristics of nodular cast iron with respect to different counter parts in boundary lubrication regime. Sliding tests were conducted with SUJ2, ZrO2, Si3N4 balls as counter parts using a pin-on-disk type tribotester. The results showed different friction and wear behaviors with different counter parts. The case of ZrO2 showed the lowest wear rate in specimen and no significant ball wear. In case of SUJ2, it showed similar wear rate with ZrO2 case in specimen and the highest friction coefficient. The case of Si3N4 showed the lowest friction coefficient, 33% lower than the case of SUJ2. It showed 16.9 times larger wear rate in specimen and 43% larger wear rate in ball compared to that of the SUJ2 case.

Evaluation of Tribological Characteristics of Diamond-Like Carbon (DLC) Coated Plastic Gear (플라스틱 기어의 트라이볼로지적 특성 향상을 위한 DLC 코팅 적용)

  • Bae, Su-Min;Khadem, Mahdi;Seo, Kuk-Jin;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Demand for plastic gears are increasing in many industries due to their low production cost, light weight, applicability without lubricant, corrosion resistance and high resilience. Despite these benefits, utilizing plastic gears is limited due to their poor material properties. In this work, DLC coating was applied to improve the tribological properties of polyamide66 gear. 0 V, 40 V, and 70 V of negative bias voltages were selected as a deposition parameter in DC magnetron sputtering system. Pin-on-disk experiment was performed in order to investigate the wear characteristics of the gears. The results of the pin-on-disk experiment showed that DLC coated polyamide66 with 40 V of negative bias voltage had the lowest friction coefficient value (0.134) and DLC coated PA66 with 0 V of negative bias voltage showed the best wear resistance ($9.83{\times}10^{-10}mm^3/N{\cdot}mm$) among all the specimens. Based on these results, durability tests were conducted for DLC coated polyamide66 gears with 0 V of negative bias voltage. The tests showed that the temperature of the uncoated polyamide66 gear increased to about $37^{\circ}C$ while the DLC coated gear saturated at about $25^{\circ}C$. Also, the power transmission efficiency of the DLC coated gear increased by about 6% compared to those without coating. Weight loss of the polyamide66 gears were reduced by about 73%.