• 제목/요약/키워드: Disease Network

검색결과 857건 처리시간 0.027초

Microbial profiling of peri-implantitis compared to the periodontal microbiota in health and disease using 16S rRNA sequencing

  • Hyun-Joo Kim;Dae-Hee Ahn;Yeuni Yu;Hyejung Han;Si Yeong Kim;Ji-Young Joo;Jin Chung;Hee Sam Na;Ju-Youn Lee
    • Journal of Periodontal and Implant Science
    • /
    • 제53권1호
    • /
    • pp.69-84
    • /
    • 2023
  • Purpose: The objective of this study was to analyze the microbial profile of individuals with peri-implantitis (PI) compared to those of periodontally healthy (PH) subjects and periodontitis (PT) subjects using Illumina sequencing. Methods: Buccal, supragingival, and subgingival plaque samples were collected from 109 subjects (PH: 30, PT: 49, and PI: 30). The V3-V4 region of 16S rRNA was sequenced and analyzed to profile the plaque microbiota. Results: Microbial community diversity in the PI group was higher than in the other groups, and the 3 groups showed significantly separated clusters in the buccal samples. The PI group showed different patterns of relative abundance from those in the PH and PT groups depending on the sampling site at both genus and phylum levels. In all samples, some bacterial species presented considerably higher relative abundances in the PI group than in the PH and PT groups, including Anaerotignum lactatifermentans, Bacteroides vulgatus, Faecalibacterium prausnitzii, Olsenella uli, Parasutterella excrementihominis, Prevotella buccae, Pseudoramibacter alactolyticus, Treponema parvum, and Slackia exigua. Network analysis identified that several well-known periodontal pathogens and newly recognized bacteria were closely correlated with each other. Conclusions: The composition of the microbiota was considerably different in PI subjects compared to PH and PT subjects, and these results could shed light on the mechanisms involved in the development of PI.

안면 백반증 치료 평가를 위한 딥러닝 기반 자동화 분석 시스템 개발 (Development of a Deep Learning-Based Automated Analysis System for Facial Vitiligo Treatment Evaluation)

  • 이세나;허연우;이솔암;박성빈
    • 대한의용생체공학회:의공학회지
    • /
    • 제45권2호
    • /
    • pp.95-100
    • /
    • 2024
  • Vitiligo is a condition characterized by the destruction or dysfunction of melanin-producing cells in the skin, resulting in a loss of skin pigmentation. Facial vitiligo, specifically affecting the face, significantly impacts patients' appearance, thereby diminishing their quality of life. Evaluating the efficacy of facial vitiligo treatment typically relies on subjective assessments, such as the Facial Vitiligo Area Scoring Index (F-VASI), which can be time-consuming and subjective due to its reliance on clinical observations like lesion shape and distribution. Various machine learning and deep learning methods have been proposed for segmenting vitiligo areas in facial images, showing promising results. However, these methods often struggle to accurately segment vitiligo lesions irregularly distributed across the face. Therefore, our study introduces a framework aimed at improving the segmentation of vitiligo lesions on the face and providing an evaluation of vitiligo lesions. Our framework for facial vitiligo segmentation and lesion evaluation consists of three main steps. Firstly, we perform face detection to minimize background areas and identify the face area of interest using high-quality ultraviolet photographs. Secondly, we extract facial area masks and vitiligo lesion masks using a semantic segmentation network-based approach with the generated dataset. Thirdly, we automatically calculate the vitiligo area relative to the facial area. We evaluated the performance of facial and vitiligo lesion segmentation using an independent test dataset that was not included in the training and validation, showing excellent results. The framework proposed in this study can serve as a useful tool for evaluating the diagnosis and treatment efficacy of vitiligo.

뉴스데이터를 활용한 국내 복합재난 발생 동향분석 (Trend Analysis of Complex Disasters in South Korea Using News Data)

  • 신은혜;김도우;장성록
    • 한국안전학회지
    • /
    • 제38권6호
    • /
    • pp.50-59
    • /
    • 2023
  • As the diversity of disasters continues to increase, the concept of "complex disasters" has gained prominence in various policies and studies related to disaster management. However, there has been a certain limitation in the availability of the systematic statistics or data in advancing policies and research initiatives related to complex disasters. This study aims to analyze the macro-level characteristics of the complex disasters that have occurred domestically utilizing a 30-year span of a news data. Initially, we categorize the complex disasters into the three types: "Natural disaster-Natural disaster", "Natural disaster-Social disaster", and "Social disaster-Social disaster". As a result, the "natural diaster-social disaster" type is the most prevalent. It is noted that "natual disaster-natural disaster" type has increased significantly in recent 10 years (2011-2020). In terms of specific disaster types, "Storm and Flood", "Collapse", "Traffic Accident", "National Infrastructure Paralysis", and "Fire⋅Explosion" occur the most in conjunction with other disasters in a complex manner. It has been observed that the types of disasters co-ocuuring with others have become more diverse over time. Parcicularly, in recent 10 years (2011-2020), in addition to the aforementioned five types, "Heat Wave", "Heavy Snowfall⋅Cold Wave", "Earthquake", "Chemical Accident", "Infectious Disease", "Forest Fire", "Air Pollution", "Drought", and "Landslide" have been notable for their frequent co-occurrence with other disasters. These findings through the statistical analysis of the complex disasters using long-term news data are expected to serve as crucial data for future policy development and research on complex disaster management.

Cytokines, Vascular Endothelial Growth Factors, and PlGF in Autoimmunity: Insights From Rheumatoid Arthritis to Multiple Sclerosis

  • Young eun Lee;Seung-Hyo Lee;Wan-Uk Kim
    • IMMUNE NETWORK
    • /
    • 제24권1호
    • /
    • pp.10.1-10.17
    • /
    • 2024
  • In this review, we will explore the intricate roles of cytokines and vascular endothelial growth factors in autoimmune diseases (ADs), with a particular focus on rheumatoid arthritis (RA) and multiple sclerosis (MS). AD is characterized by self-destructive immune responses due to auto-reactive T lymphocytes and Abs. Among various types of ADs, RA and MS possess inflammation as a central role but in different sites of the patients. Other common aspects among these two ADs are their chronicity and relapsing-remitting symptoms requiring continuous management. First factor inducing these ADs are cytokines, such as IL-6, TNF-α, and IL-17, which play significant roles in the pathogenesis by contributing to inflammation, immune cell activation, and tissue damage. Secondly, vascular endothelial growth factors, including VEGF and angiopoietins, are crucial in promoting angiogenesis and inflammation in these two ADs. Finally, placental growth factor (PlGF), an emerging factor with bi-directional roles in angiogenesis and T cell differentiation, as we introduce as an "angio-lymphokine" is another key factor in ADs. Thus, while angiogenesis recruits more inflammatory cells into the peripheral sites, cytokines secreted by effector cells play critical roles in the pathogenesis of ADs. Various therapeutic interventions targeting these soluble molecules have shown promise in managing autoimmune pathogenic conditions. However, delicate interplay between cytokines, angiogenic factors, and PlGF has more to be studied when considering their complementary role in actual pathogenic conditions. Understanding the complex interactions among these factors provides valuable insights for the development of innovative therapies for RA and MS, offering hope for improved patient outcomes.

Cytokine Storm Related to CD4+ T Cells in Influenza Virus-Associated Acute Necrotizing Encephalopathy

  • Shushu Wang;Dongyao Wang;Xuesong Wang;Mingwu Chen;Yanshi Wang;Haoquan Zhou;Yonggang Zhou;Yong Lv;Haiming Wei
    • IMMUNE NETWORK
    • /
    • 제24권2호
    • /
    • pp.18.1-18.12
    • /
    • 2024
  • Acute necrotizing encephalopathy (ANE) is a rare but deadly complication with an unclear pathogenesis. We aimed to elucidate the immune characteristics of H1N1 influenza virus-associated ANE (IANE) and provide a potential therapeutic approach for IANE. Seven pediatric cases from a concentrated outbreak of H1N1 influenza were included in this study. The patients' CD4+ T cells from peripheral blood decreased sharply in number but highly expressed Eomesodermin (Eomes), CD69 and PD-1, companied with extremely high levels of IL-6, IL-8 in the cerebrospinal fluid and plasma. Patient 2, who showed high fever and seizures and was admitted to the hospital very early in the disease course, received intravenous tocilizumab and subsequently showed a reduction in temperature and a stable conscious state 24 h later. In conclusion, a proinflammatory cytokine storm associated with activated CD4+ T cells may cause severe brain pathology in IANE. Tocilizumab may be helpful in treating IANE.

Tumor Promoting Function of DUSP10 in Non-Small Cell Lung Cancer Is Associated With Tumor-Promoting Cytokines

  • Xing Wei;Chin Wen Png;Madhushanee Weerasooriya;Heng Li;Chenchen Zhu;Guiping Chen;Chuan Xu;Yongliang Zhang;Xiaohong Xu
    • IMMUNE NETWORK
    • /
    • 제23권4호
    • /
    • pp.34.1-34.15
    • /
    • 2023
  • Lung cancer, particularly non-small cell lung cancer (NSCLC) which contributes more than 80% to totally lung cancer cases, remains the leading cause of cancer death and the 5-year survival is less than 20%. Continuous understanding on the mechanisms underlying the pathogenesis of this disease and identification of biomarkers for therapeutic application and response to treatment will help to improve patient survival. Here we found that a molecule known as DUSP10 (also known as MAPK phosphatase 5) is oncogenic in NSCLC. Overexpression of DUSP10 in NSCLC cells resulted in reduced activation of ERK and JNK, but increased activation of p38, which was associated with increased cellular growth and migration. When inoculated in immunodeficient mice, the DUSP10-overexpression NSCLC cells formed larger tumors compared to control cells. The increased growth of DUSP10-overexpression NSCLC cells was associated with increased expression of tumor-promoting cytokines including IL-6 and TGFβ. Importantly, higher DUSP10 expression was associated with poorer prognosis of NSCLC patients. Therefore, DUSP10 could severe as a biomarker for NSCLC prognosis and could be a target for development of therapeutic method for lung cancer treatment.

The Immunosuppressive Potential of Cholesterol Sulfate Through T Cell Microvilli Disruption

  • Jeong-Su Park;Ik-Joo Chung;Hye-Ran Kim;Chang-Duk Jun
    • IMMUNE NETWORK
    • /
    • 제23권3호
    • /
    • pp.29.1-29.23
    • /
    • 2023
  • Cholesterol (CL) is required for various biomolecular production processes, including those of cell membrane components. Therefore, to meet these needs, CL is converted into various derivatives. Among these derivatives is cholesterol sulfate (CS), a naturally produced CL derivative by the sulfotransferase family 2B1 (SULT2B1), which is widely present in human plasma. CS is involved in cell membrane stabilization, blood clotting, keratinocyte differentiation, and TCR nanocluster deformation. This study shows that treatment of T cells with CS resulted in the decreased surface expression of some surface T-cell proteins and reduced IL-2 release. Furthermore, T cells treated with CS significantly reduced lipid raft contents and membrane CLs. Surprisingly, using the electron microscope, we also observed that CS led to the disruption of T-cell microvilli, releasing small microvilli particles containing TCRs and other microvillar proteins. However, in vivo, T cells with CS showed aberrant migration to high endothelial venules and limited infiltrating splenic T-cell zones compared with the untreated T cells. Additionally, we observed significant alleviation of atopic dermatitis in mice injected with CS in the animal model. Based on these results, we conclude that CS is an immunosuppressive natural lipid that impairs TCR signaling by disrupting microvillar function in T cells, suggesting its usefulness as a therapeutic agent for alleviating T-cell-mediated hypersensitivity and a potential target for treating autoimmune diseases.

Protective Efficacy and Immunogenicity of Rv0351/Rv3628 Subunit Vaccine Formulated in Different Adjuvants Against Mycobacterium tuberculosis Infection

  • Kee Woong Kwon;Tae Gun Kang;Ara Lee;Seung Mo Jin;Yong Taik Lim;Sung Jae Shin;Sang-Jun Ha
    • IMMUNE NETWORK
    • /
    • 제23권2호
    • /
    • pp.16.1-16.19
    • /
    • 2023
  • Bacillus Calmette-Guerin (BCG) vaccine is the only licensed vaccine for tuberculosis (TB) prevention. Previously, our group demonstrated the vaccine potential of Rv0351 and Rv3628 against Mycobacterium tuberculosis (Mtb) infection by directing Th1-biased CD4+ T cells co-expressing IFN-γ, TNF-α, and IL-2 in the lungs. Here, we assessed immunogenicity and vaccine potential of the combined Ags (Rv0351/Rv3628) formulated in different adjuvants as subunit booster in BCG-primed mice against hypervirulent clinical Mtb strain K (Mtb K). Compared to BCG-only or subunit-only vaccine, BCG prime and subunit boost regimen exhibited significantly enhanced Th1 response. Next, we evaluated the immunogenicity to the combined Ags when formulated with four different types of monophosphoryl lipid A (MPL)-based adjuvants: 1) dimethyldioctadecylammonium bromide (DDA), MPL, and trehalose dicorynomycolate (TDM) in liposome form (DMT), 2) MPL and Poly I:C in liposome form (MP), 3) MPL, Poly I:C, and QS21 in liposome form (MPQ), and 4) MPL and Poly I:C in squalene emulsion form (MPS). MPQ and MPS displayed greater adjuvancity in Th1 induction than DMT or MP did. Especially, BCG prime and subunit-MPS boost regimen significantly reduced the bacterial loads and pulmonary inflammation against Mtb K infection when compared to BCG-only vaccine at a chronic stage of TB disease. Collectively, our findings highlighted the importance of adjuvant components and formulation to induce the enhanced protection with an optimal Th1 response.

Exercise With a Novel Digital Device Increased Serum Anti-influenza Antibody Titers After Influenza Vaccination

  • Jun-Pyo Choi;Ghazal Ayoub;Jarang Ham;Youngmin Huh;Seung Eun Choi;Yu-Kyoung Hwang;Ji Yun Noh;Sae-Hoon Kim;Joon Young Song;Eu Suk Kim;Yoon-Seok Chang
    • IMMUNE NETWORK
    • /
    • 제23권2호
    • /
    • pp.18.1-18.15
    • /
    • 2023
  • It has been reported that some exercise could enhance the anti-viral antibody titers after vaccination including influenza and coronavirus disease 2019 vaccines. We developed SAT-008, a novel digital device, consists of physical activities and activities related to the autonomic nervous system. We assessed the feasibility of SAT-008 to boost host immunity after an influenza vaccination by a randomized, open-label, and controlled study on adults administered influenza vaccines in the previous year. Among 32 participants, the SAT-008 showed a significant increase in the anti-influenza antibody titers assessed by hemagglutination-inhibition test against antigen subtype B Yamagata lineage after 4 wk of vaccination and subtype B Victoria lineage after 12 wk (p<0.05). There was no difference in the antibody titers against subtype "A." The SAT-008 also showed significant increase in the plasma cytokine levels of IL-10, IL-1β, and IL-6 at weeks 4 and 12 after the vaccination (p<0.05). A new approach using the digital device may boost host immunity against virus via vaccine adjuvant-like effects.

Unraveling the Web of Health Misinformation: Exploring the Characteristics, Emotions, and Motivations of Misinformation During the COVID-19 Pandemic

  • Vinit Yadav;Yukti Dhadwal;Rubal Kanozia;Shri Ram Pandey;Ashok Kumar
    • Asian Journal for Public Opinion Research
    • /
    • 제12권1호
    • /
    • pp.53-74
    • /
    • 2024
  • The proliferation of health misinformation gained momentum amidst the outbreak of the novel coronavirus disease 2019 (COVID-19). People stuck in their homes, without work pressure, regardless of health concerns towards personal, family, or peer groups, consistently demanded information. People became engaged with misinformation while attempting to find health information content. This study used the content analysis method and analyzed 1,154 misinformation stories from four prominent signatories of the International Fact-Checking Network during the pandemic. The study finds the five main categories of misinformation related to the COVID-19 pandemic. These are 1) the severity of the virus, 2) cure, prevention, and treatment, 3) myths and rumors about vaccines, 4) health authorities' guidelines, and 5) personal and social impacts. Various sub-categories supported the content characteristics of these categories. The study also analyzed the emotional valence of health misinformation. It was found that misinformation containing negative sentiments got higher engagement during the pandemic. Positive and neutral sentiment misinformation has less reach. Surprise, fear, and anger/aggressive emotions highly affected people during the pandemic; in general, people and social media users warning people to safeguard themselves from COVID-19 and creating a confusing state were found as the primary motivation behind the propagation of misinformation. The present study offers valuable perspectives on the mechanisms underlying the spread of health-related misinformation amidst the COVID-19 outbreak. It highlights the significance of discerning the accuracy of information and the feelings it conveys in minimizing the adverse effects on the well-being of public health.