• Title/Summary/Keyword: Discrete-time current control

Search Result 83, Processing Time 0.026 seconds

New Discrete-time Small Signal Model of Average Current Mode Control for Current Response Prediction (평균전류모드제어의 전류응답예측을 위한 새로운 이산시간 소신호 모델)

  • Jung Young-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.219-225
    • /
    • 2005
  • In this paper, a new discrete-time small signal model of an average current mode control is proposed to predict the inductor current responses. Compared to the peak current mode control, the analysis of the average current mode control is difficult because of its presence of an compensation network. By utilizing sampler model, a new discrete-time small signal model is derived and used to predict the behaviors of an inductor current of average current mode control employing generalized compensation networks. In order to show the usefulness of the proposed model, prediction results of the proposed model are compared to those of the circuit level simulator, PSIM and experiment.

Slope Compensation Design of Buck AC/DC LED Driver Based on Discrete-Time Domain Analysis (이산 시간 영역 해석에 기반한 벅 AC/DC LED 구동기의 슬로프 보상 설계)

  • Kim, Marn-Go
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.207-214
    • /
    • 2019
  • In this study, discrete-time domain analysis is proposed to investigate the input current of a buck AC/DC light-emitting diode (LED) driver. The buck power factor correction converter can operate in both discontinuous conduction mode (DCM) and continuous conduction mode (CCM). Two discontinuous and two continuous conduction operating modes are possible depending on which event terminates the conduction of the main switch in a switching cycle. All four operating modes are considered in the discrete-time domain analysis. The peak current-mode control with slope compensation is used to design a low-cost AC/DC LED driver. A slope compensation design of the buck AC/DC LED driver is described on the basis of a discrete-time domain analysis. Experimental results are presented to confirm the usefulness of the proposed analysis.

High Performance CNC Control Using a New Discrete-Time Variable Structure Control Method (새로운 이산시간 가변구조 제어방법을 이용한 CNC의 고성능 제어)

  • Oh, Seung-Hyun;Kim, Jung-ho;Cho, Dong-il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1053-1060
    • /
    • 2000
  • In this paper, a discrete-time variable structure control method using recursively defined switching function and a decoupled variable structure disturbance compensator is used to achieve high performance circular motion control of a CNC machining center. The discrete-time variable structure control with the decoupled disturbance compensator method developed in this paper uses a recursive switching function defined as the sum of the current tracking error vector and the previous value of the switching function multiplied by a positive constant less than one. This recursive switching function provides much improved performance compared to the method that uses a switching function defined only as a linear combination of the current tracking error. Enhancements in tracking performance are demonstrated in the circular motion control using a CNC milling machine.

  • PDF

An Enhanced Finite-Settling-Step Direct Torque and Flux Control (FSS-DTFC) for IPMSM Drives

  • Kim, Sehwan;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1367-1374
    • /
    • 2016
  • This paper presents a discrete-time version of voltage and current limited operation using an enhanced direct torque and flux control method for interior permanent magnet synchronous motor (IPMSM) drives. A command voltage vector for airgap torque and stator flux regulation can be uniquely determined by the finite-settling-step direct torque and flux control (FSS-DTFC) algorithm under physical constraints. The proposed command voltage vector trajectories can be developed to achieve the maximum inverter voltage utilization for the discrete-time current limit (DTCL)-based FSS-DTFC. The algorithm can produce adequate results over a number of the potential secondary upsets found in the steady-state current limit (SSCL)-based DTFC. The fast changes in the torque and stator flux linkage improve the dynamic responses significantly over a wide constant-power operating region. The control strategy was evaluated on a 900W IPMSM in both simulations and experiments.

Small Signal Modeling of Current Mode Control (전류모드 제어의 소신호 모델링)

  • 정영석;강정일;최현칠;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.338-345
    • /
    • 1998
  • The mathematical interpretation of a practical sampler which is useful to obtain the small signal models for the peak and average current mode controls is proposed. Due to the difficulties in applying the Shannons sampling theorem to the analysis of sampling effects embedded in the current mode control, several different approaches have been reported. However, these approaches require the information of the inductor current in a discrete expression, which restricts the application of the reported method only to the peak current mode control. In this paper, the mathematical expressions of sampling effects on a current loop which can directly apply the Shannons sampling theorem are newly proposed, and applied to the modeling of the peak current mode control. By the newly derived models of a practial smapler, the models in a discrete time domain and a continuous time domain are obtained. It is expected that the derived models are useful for the control loop design of power supplies. The effectiveness of the derived models are verified through the simulation and experimental results.

  • PDF

A Novel Discrete-Time Predictive Current Control for PMSM

  • Sun, Jung-Won;Suh, Jin-Ho;Lee, Young-Jin;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1915-1919
    • /
    • 2004
  • In this paper, we propose a new discrete-time predictive current controller for a PMSM(Permanent Magnet Synchronous Motor). The main objectives of the current controllers are to ensure that the measured stator currents tract the command values accurately and to shorten the transient interval as much as possible, in order to obtain high-performance of ac drive system. The conventional predictive current controller is hard to implement in full digital current controller since a finite calculation time causes a delay between the current sensing time and the time that it takes to apply the voltage to motor. A new control strategy in this paper is seen the scheme that gets the fast adaptation of transient current change, the fast transient response tracking and is proposed simplified calculation. Moreover, the validity of the proposed method is demonstrated by numerical simulations and the simulation results will be verified the improvements of predictive controller and accuracy of the current controller.

  • PDF

A Discrete-Time Nonlinear Robust Controller for Current Regulation in PMSM Drives

  • Turker, Turker;Yanik, Gurcan;Buyukkeles, Umit;Bakan, Faruk;Mese, Erkan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1537-1547
    • /
    • 2017
  • In this paper, a discrete-time robust current controller is proposed for PMSM drives. The structure of the proposed controller is quite simple and does not require high computational resource. The only difference of the proposed controller from the classical dead-beat controller is the integral term which can easily be implemented in a PMSM drive. The stability analysis of the proposed controller is performed accounting in parametric uncertainties, unmodelled dynamics and disturbances in the mathematical model. The boundedness of the dynamical system and asymptotic convergence of dq-axes currents to their reference values are provided under certain conditions. Various simulation and experimental studies are performed and the results taken at different operation conditions show the validity of the proposed controller.

Modeling of a Converter Utilizing Current Mode Control (전류모드제어 방식을 이용하는 컨버터의 모델링)

  • 정영석;이준영;강정일;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.275-278
    • /
    • 1998
  • The mathematical interpretation of a practical sampler which is useful to obtain the small signal models for the peak and average current mode controls is proposed. Due to the difficulties in applying the Shannon's sampling theorem to the analysis of sampling effects embedded in the current mode control, several different approaches have been reported. However, these approaches require the information of the inductor current in a discrete expression, which restricts the application of the reported method only to the peak current mode control. In this paper, the mathematical expressions of sampling effects on a current loop which can directly apply the Shannon's sampling theorem are newly proposed, and applied to the modeling of the peak current mode control. By the newly derived models of a practical sampler, the models in a discrete time domain and a continuous time domain are obtained. It is expected that the derived models are useful for the control loop design of power supplies. The effectiveness of the derived models are verified through the simulation and experimental results.

  • PDF

A Novel Discrete-Time Predictive Current Control for PMSM

  • Sun, Jung-Won;Lee, Jin-Woo;Suh, Jin-Ho;Lee, Young-Jin;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2503-2508
    • /
    • 2005
  • In this paper, we propose a new discrete-time predictive current controller for a PMSM(Permanent Magnet Synchronous Motor). The main objectives of the current controllers are to ensure that the measured stator currents tract the command values accurately and to shorten the transient interval as much as possible, in order to obtain high-performance of ac drive system. The conventional predictive current controller is hard to implement in full digital current controller since a finite calculation time causes a delay between the current sensing time and the time that it takes to apply the voltage to motor. A new control strategy in this paper is seen the scheme that gets the fast adaptation of transient current change, the fast transient response tracking. Moreover, the validity of the proposed method is demonstrated by numerical simulations and the simulation results will present the improvements of predictive controller and accuracy of the current controller.

  • PDF

Analysis of PID Control for Microprocessor-based Current Source Inverter-Induction Motor System (마이크로프로세서에 의한 전류형 인버어터 - 유도전동기의 PID제어시스템에 대한 해석)

  • 박민호;전태원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.7
    • /
    • pp.283-288
    • /
    • 1985
  • This paper is concerned with the analysis of microprocessor-based PID control for the current source inverter-induction motor derive system. A linearized dynamic model of the motor is derived and is converted into the discrete-time model. With the equation, the overall system including the feedback loops is formulated into a single discrete-time state equation. The stability regions are determined at various values of controller gains. The transient responses of the motor speed are simulated by digital computer and are verified by laboratory experiments.

  • PDF