• Title/Summary/Keyword: Discrete-event

Search Result 529, Processing Time 0.024 seconds

Two-Level Hierarchical Production Planning for a Semiconductor Probing Facility (반도체 프로브 공정에서의 2단계 계층적 생산 계획 방법 연구)

  • Bang, June-Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.159-167
    • /
    • 2015
  • We consider a wafer lot transfer/release planning problem from semiconductor wafer fabrication facilities to probing facilities with the objective of minimizing the deviation of workload and total tardiness of customers' orders. Due to the complexity of the considered problem, we propose a two-level hierarchical production planning method for the lot transfer problem between two parallel facilities to obtain an executable production plan and schedule. In the higher level, the solution for the reduced mathematical model with Lagrangian relaxation method can be regarded as a coarse good lot transfer/release plan with daily time bucket, and discrete-event simulation is performed to obtain detailed lot processing schedules at the machines with a priority-rule-based scheduling method and the lot transfer/release plan is evaluated in the lower level. To evaluate the performance of the suggested planning method, we provide computational tests on the problems obtained from a set of real data and additional test scenarios in which the several levels of variations are added in the customers' demands. Results of computational tests showed that the proposed lot transfer/planning architecture generates executable plans within acceptable computational time in the real factories and the total tardiness of orders can be reduced more effectively by using more sophisticated lot transfer methods, such as considering the due date and ready times of lots associated the same order with the mathematical formulation. The proposed method may be implemented for the problem of job assignment in back-end process such as the assignment of chips to be tested from assembly facilities to final test facilities. Also, the proposed method can be improved by considering the sequence dependent setup in the probing facilities.

Modeling and Simulation of LEACH Protocol to Analyze DEVS Kernel-models in Sensor Networks

  • Nam, Su Man;Kim, Hwa Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.97-103
    • /
    • 2020
  • Wireless sensor networks collect and analyze sensing data in a variety of environments without human intervention. The sensor network changes its lifetime depending on routing protocols initially installed. In addition, it is difficult to modify the routing path during operating the network because sensors must consume a lot of energy resource. It is important to measure the network performance through simulation before building the sensor network into the real field. This paper proposes a WSN model for a low-energy adaptive clustering hierarchy protocol using DEVS kernel models. The proposed model is implemented with the sub models (i.e. broadcast model and controlled model) of the kernel model. Experimental results indicate that the broadcast model based WSN model showed lower CPU resource usage and higher message delivery than the broadcast model.

The Applicability of Avionics Simulation Model Framework by Analyzing the Performance (항공용 시뮬레이션 모델 프레임워크 성능 분석을 통한 적용성 평가)

  • Seo, Min-gi;Cho, Yeon-je;Shin, Ju-chul;Baek, Gyong-hoon;Kim, Seong-woo
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.5
    • /
    • pp.336-343
    • /
    • 2021
  • Avionics corresponds to the brain, nerves and five senses of an aircraft, and consists of aircraft mounted electronic equipment of communication, identification, navigation, weapon, and display systems to perform flight and missions. It occupies about 50% of the aircraft system, and its importance is increasing as the technology based on the 4th industrial revolution is developed. As the development period of the aircraft is getting shorter, it is definitely necessary to develop a stable avionics SIL in a timely manner for the integration and verification of the avionics system. In this paper, we propose a method to replace the legacy SIL with the avionics simulation model framework based one and evaluate the framework based on the result of alternative application.

Vessel and Navigation Modeling and Simulation based on DEVS Formalism : Case Studies in Collision Avoidance Simulation of Vessels by COLREG (DEVS 형식론 기반의 선박 항해 모델링 및 시뮬레이션 (II) : COLREG 기반 선박 충돌회피 시뮬레이션을 통한 사례연구)

  • Hwang, Hun-Gyu;Woo, Sang-Min;Lee, Jang-Se
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1700-1709
    • /
    • 2019
  • Recently, many researches have been under way to develop systems (services) to support the safety navigation of ships, and in these studies, common difficulties have been encountered in assessing the usefulness and effectiveness of the developed system. To solve these problems, we propose the DEVS-based ship navigation modeling and simulation technique. Following the preceding study, we analyze the COLREG rules and reflected to officer and helmsman agent models for decision making. Also we propose estimation and interpolation techniques to adopt the motion characteristics of the actual vessel to simulation. In addition, we implement the navigation simulation system to reflect the designed proposed methods, and we present five-scenarios to verify the developed simulation system. And we conduct simulations according to each scenario and the results were reconstructed. The simulation results confirm that the components modelled in each scenario enable to operate according to the navigation relationships.

Design of Scenario Creation Model for AI-CGF based on Naval Operations, Resources Analysis Model(I): Evolutionary Learning (해군분석모델용 AI-CGF를 위한 시나리오 생성 모델 설계(I): 진화학습)

  • Hyun-geun, Kim;Jung-seok, Gang;Kang-moon, Park;Jae-U, Kim;Jang-hyun, Kim;Bum-joon, Park;Sung-do, Chi
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.617-627
    • /
    • 2022
  • Military training is an essential item for the fundamental problem of war. However, there has always been a problem that many resources are consumed, causing spatial and environmental pollution. The concepts of defense modeling and simulation and CGF(Computer Generated Force) using computer technology began to appear to improve this problem. The Naval Operations, Resources Analysis Model(NORAM) developed by the Republic of Korea Navy is also a DEVS(Discrete Event Simulation)-based naval virtual force analysis model. The current NORAM is a battle experiment conducted by an operator, and parameter values such as maneuver and armament operation for individual objects for each situation are evaluated. In spite of our research conducted evolutionary, supervised, reinforcement learning, in this paper, we introduce our design of a scenario creation model based on evolutionary learning using genetic algorithms. For verification, the NORAM is loaded with our model to analyze wartime engagements. Human-level tactical scenario creation capability is secured by automatically generating enemy tactical scenarios for human-designed Blue Army tactical scenarios.

DEVS-based Modeling Simulation for Semiconductor Manufacturing Using an Simulation-based Adaptive Real-time Job Control Framework (시뮬레이션 기반 적응형 실시간 작업 제어 프레임워크를 적용한 웨이퍼 제조 공정 DEVS 기반 모델링 시뮬레이션)

  • Song, Hae-Sang;Lee, Jae-Young;Kim, Tag-Gon
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.45-54
    • /
    • 2010
  • The inherent complexity of semiconductor fabrication processes makes it hard to solve well-known job scheduling problems in analytical ways, which leads us to rely practically on discrete event modeling simulations to learn the effects of changing the system's parameters. Meanwhile, unpredictable disturbances such as machine failures and maintenance diminish the productivity of semiconductor manufacturing processes with fixed scheduling policies; thus, it is necessary to adapt job scheduling policy in a timely manner in reaction to critical environmental changes (disturbances) in order for the fabrication process to perform optimally. This paper proposes an adaptive job control framework for a wafer fabrication process in a control system theoretical approach and implements it based on a DEVS modeling simulation environment. The proposed framework has the advantages in view of the whole systems understanding and flexibility of applying new rules compared to most ad-hoc software approaches in this field. Furthermore, it is flexible enough to incorporate new job scheduling rules into the existing rule set. Experimental results show that this control framework with adaptive rescheduling outperforms fixed job scheduling algorithms.

Modeling and Simulation of Optimal Path Considering Battlefield-situation in the War-game Simulation (워게임 시뮬레이션에서 전장상황을 고려한 최적경로 모델링 및 시뮬레이션)

  • Lee, Sung-Young;Jang, Sung-Ho;Lee, Jong-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.27-35
    • /
    • 2010
  • War-games using C4I systems have been used to improve the command ability of commanders and the fighting power of combat forces. During a war-game simulation, a commander makes a plan for the movement of a combat force and issues orders to the combat force according to the plan. If it is possible to minimize damages from the artillery of enemy forces and take the advantage position where is effective for attack/defense, we can hold a dominant position of the battlefield. Therefore, this papers proposes a genetic algorithm-based optimal path searching method. The proposed method creates an optimal path of a combat force by taking into consideration dangerous conditions of the battlefield in which the combat force is. This paper also shows the process of creating an optimal path by using a discrete event specification modeling and simulation method.

Modeling and Simulation Analysis of the Setup Reduction Method in Automobile Painting Process (자동차 도장 공정의 셋업 감소 방법 모델링 및 시뮬레이션 분석)

  • Han, Yong-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.147-154
    • /
    • 2009
  • In this study we investigate the problem of reducing color change cost at painting operations in an automobile assembly plant. Changing control logic at conveyor junction points prior to the top coat line has been proposed and analyzed using the discrete event simulation model we developed using AutoMod. We also discussed the project which initiated this research as well as the details of painting operations. Simulation analysis showed that the grouping ratio increases from 1.8 to 2.5 if the proposed control logic change is applied to the plant. Contrary to other approaches such as using dedicated equipment for resequencing, our approach has the merit of less investment cost, no need for additional space consumption. We finally note that the grouping ratio can be further increased if our algorithms is implemented as well as CRS (Color Rescheduling Storage) is installed.

Study of Situation Prediction Simulation for Navigation Information System of Ship (선박의 항행정보시스템을 위한 상황 예측 시뮬레이션 방안 연구)

  • Yi, Mi-Ra
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.127-135
    • /
    • 2010
  • Modern marine navigation requires officers on the bridge to monitor a torrent of data on both the insides and outsides of the ship from numerous useful devices. But despite these tools, navigators can still find it difficult to make a safe decision for two reasons: one is that too much data if provided too quickly tends to cause fatigue and overwhelm the officer, and the other is that any inconsistency across data from several different types of devices can lead to confusion. Indeed, the fact remains that the many marine accidents can be attributed to human error, and hence there is a strong need for decision-support tools for marine navigation. One technique of providing decision support is through the use of simulation to evaluate or predict system dynamics over time using an accurate model. This paper, as a simulation method for risk prediction for a navigation safety information system of ship, suggests a navigation prediction simulation system using various knowledge bases and discrete event simulation methodology, and supports the validity of the system through the examples of components in a restricted navigation situation scenario.

Short-term Scheduling Optimization for Subassembly Line in Ship Production Using Simulated Annealing (시뮬레이티드 어닐링을 활용한 조선 소조립 라인 소일정계획 최적화)

  • Hwang, In-Hyuck;Noh, Jac-Kyou;Lee, Kwang-Kook;Shin, Jon-Gye
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.73-82
    • /
    • 2010
  • Productivity improvement is considered as one of hot potato topics in international shipyards by the increasing amount of orders. In order to improve productivity of lines, shipbuilders have been researching and developing new work method, process automation, advanced planning and scheduling and so on. An optimization approach was accomplished on short-term scheduling of subassembly lines in this research. The problem of subassembly line scheduling turned out to be a non-deterministic polynomial time problem with regard to SKID pattern’s sequence and worker assignment to each station. The problem was applied by simulated annealing algorithm, one of meta-heuristic methods. The algorithm was aimed to avoid local minimum value by changing results with probability function. The optimization result was compared with discrete-event simulation's to propose what pros and cons were. This paper will help planners work on scheduling and decision-making to complete their task by evaluation.