• Title/Summary/Keyword: Discrete market model

Search Result 33, Processing Time 0.019 seconds

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taeksoo;Han, Ingoo
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support fer multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To date, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques' results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taek-Soo;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support for multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To data, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF

Business Relationships and Structural Bonding: A Study of American Metal Industry (산업재 거래관계와 구조적 결합: 미국 금속산업의 분석 연구)

  • Han, Sang-Lin;Kim, Yun-Tae;Oh, Chang-Yeob;Chung, Jae-Moon
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.3
    • /
    • pp.115-132
    • /
    • 2008
  • Metal industry is one of the most representative heavy industries and the median sales volume of steel and nonferrous metal companies is over one billion dollars in the case America [Forbes 2006]. As seen in the recent business market situation, an increasing number of industrial manufacturers and suppliers are moving from adversarial to cooperative exchange attitudes that support the long-term relationships with their customers. This article presents the results of an empirical study of the antecedent factors of business relationships in metal industry of the United States. Commitment has been reviewed as a significant and critical variable in research on inter-organizational relationships (Hong et al. 2007, Kim et al. 2007). The future stability of any buyer-seller relationship depends upon the commitment made by the interactants to their relationship. Commitment, according to Dwyer et al. [1987], refers to "an implicit or explicit pledge of relational continuity between exchange partners" and they consider commitment to be the most advanced phase of buyer-seller exchange relationship. Bonds are made because the members need their partners in order to do something and this integration on a task basis can be either symbiotic or cooperative (Svensson 2008). To the extent that members seek the same or mutually supporting ends, there will be strong bonds among them. In other words, the principle that affects the strength of bonds is 'economy of decision making' [Turner 1970]. These bonds provide an important idea to study the causes of business long-term relationships in a sense that organizations can be mutually bonded by a common interest in the economic matters. Recently, the framework of structural bonding has been used to study the buyer-seller relationships in industrial marketing [Han and Sung 2008, Williams et al. 1998, Wilson 1995] in that this structural bonding is a crucial part of the theoretical justification for distinguishing discrete transactions from ongoing long-term relationships. The major antecedent factors of buyer commitment such as technology, CLalt, transaction-specific assets, and importance were identified and explored from the perspective of structural bonding. Research hypotheses were developed and tested by using survey data from the middle managers in the metal industry. H1: Level of technology of the relationship partner is positively related to the level of structural bonding between the buyer and the seller. H2: Comparison level of alternatives is negatively related to the level of structural bonding between the buyer and the seller. H3: Amount of the transaction-specific assets is positively related to the level of structural bonding between the buyer and the seller. H4: Importance of the relationship partner is positively related to the level of structural bonding between the buyer and the seller. H5: Level of structural bonding is positively related to the level of commitment to the relationship. To examine the major antecedent factors of industrial buyer's structural bonding and long-term relationship, questionnaire was prepared, mailed out to the sample of 400 purchasing managers of the US metal industry (SIC codes 33 and 34). After a follow-up request, 139 informants returnedthe questionnaires, resulting in a response rate of 35 percent. 134 responses were used in the final analysis after dropping 5 incomplete questionnaires. All measures were analyzed for reliability and validity following the guidelines offered by Churchill [1979] and Anderson and Gerbing [1988]., the results of fitting the model to the data indicated that the hypothesized model provides a good fit to the data. Goodness-of-fit index (GFI = 0.94) and other indices ( chi-square = 78.02 with p-value = 0.13, Adjusted GFI = 0.90, Normed Fit Index = 0.92) indicated that a major proportion of variances and covariances in the data was accounted for by the model as a whole, and all the parameter estimates showed statistical significance as evidenced by large t-values. All the factor loadings were significantly different from zero. On these grounds we judged the hypothesized model to be a reasonable representation of the data. The results from the present study suggest several implications for buyer-seller relationships. Theoretically, we attempted to conceptualize the antecedent factors of buyer-seller long-term relationships from the perspective of structural bondingin metal industry. The four underlying determinants (i.e. technology, CLalt, transaction-specific assets, and importance) of structural bonding are very critical variables of buyer-seller long-term business relationships. Our model of structural bonding makes an attempt to systematically examine the relationship between the antecedent factors of structural bonding and long-term commitment. Managerially, this research provides industrial purchasing managers with a good framework to assess the interaction processes with their partners and, ability to position their business relationships from the perspective of structural bonding. In other words, based on those underlying variables, industrial purchasing managers can determine the strength of the company's relationships with the key suppliers and its state of preparation to be a successful partner with those suppliers. Both the supplying and customer companies can also benefit by using the concept of 'structural bonding' and evaluating their relationships with key business partners from the structural point of view. In general, the results indicate that structural bonding gives a critical impact on the level of relationship commitment. Managerial implications and limitations of the study are also discussed.

  • PDF