• 제목/요약/키워드: Discrete hidden markov model (DHMM)

검색결과 12건 처리시간 0.03초

터보회전기기의 진동모니터링 및 진단을 위한 이산 은닉 마르코프 모델에 관한 연구 (A Study on Discrete Hidden Markov Model for Vibration Monitoring and Diagnosis of Turbo Machinery)

  • 이종민;황요하;송창섭
    • 한국유체기계학회 논문집
    • /
    • 제7권2호
    • /
    • pp.41-49
    • /
    • 2004
  • Condition monitoring is very important in turbo machinery because single failure could cause critical damages to its plant. So, automatic fault recognition has been one of the main research topics in condition monitoring area. We have used a relatively new fault recognition method, Hidden Markov Model(HMM), for mechanical system. It has been widely used in speech recognition, however, its application to fault recognition of mechanical signal has been very limited despite its good potential. In this paper, discrete HMM(DHMM) was used to recognize the faults of rotor system to study its fault recognition ability. We set up a rotor kit under unbalance and oil whirl conditions and sampled vibration signals of two failure conditions. DHMMS of each failure condition were trained using sampled signals. Next, we changed the setup and the rotating speed of the rotor kit. We sampled vibration signals and each DHMM was applied to these sampled data. It was found that DHMMs trained by data of one rotating speed have shown good fault recognition ability in spite of lack of training data, but DHMMs trained by data of four different rotating speeds have shown better robustness.

회전 블레이드의 크랙 발생 예측을 위한 은닉 마르코프모델을 이용한 해석 (Crack Detection of Rotating Blade using Hidden Markov Model)

  • 이승규;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.99-105
    • /
    • 2009
  • Crack detection method of a rotating blade was suggested in this paper. A rotating blade was modeled with a cantilever beam connected to a hub undergoing rotating motion. The existence and the location of crack were able to be recognized from the vertical response of end tip of a rotating cantilever beam by employing Discrete Hidden Markov Model (DHMM) and Empirical Mode Decomposition (EMD). DHMM is a famous stochastic method in the field of speech recognition. However, in recent researches, it has been proved that DHMM can also be used in machine health monitoring. EMD is the method suggested by Huang et al. that decompose a random signal into several mono component signals. EMD was used in this paper as the process of extraction of feature vectors which is the important process to developing DHMM. It was found that developed DHMMs for crack detection of a rotating blade have shown good crack detection ability.

  • PDF

퍼지양자화 은닉 마르코프 모델에서 코드워드 종속거리 정규화와 Instar 형태의 퍼지 기여도에 기반한 출력확률의 평활화 (Codeword-Dependent Distance Normalization and Smoothing of Output Probalities Based on the Instar-formed Fuzzy Contribution in the FVQ-DHMM)

  • 최환진;김연준;오영환
    • 한국음향학회지
    • /
    • 제16권2호
    • /
    • pp.71-79
    • /
    • 1997
  • 본 논문에서는 FVQ-DHMM(fuzzy vector quantization-discrete hidden Markov model)에서 강인한 출력확률의 추정을 위해서 코드워드 종속 거리 정규화와 출력확률에 대한 instar 형태의 퍼지 평활화 방법을 제안한다. FVQ-DHMM은 DHMM의 변형된 모델로, 상태별 출력확률이 입력패턴에 대한 각 코드워드와의 가중치와 출력확률의 곱에 대한 합의 형태로 추정된다. FVQ-DHMM의 성능이 가중치 요소와 상태별 출력분포에 영향을 받으므로, 가중치 요소와 상태별 출력분포를 강인하게 추정하는 방법이 필요하게 된다. 실험결과, 제안된 코드워드 종속 거리 정규화(CDDN : codeword dependent distance normalization)를 적용한 방법이 기존의 FVQ-DHMM에 비해 24%의 오인식률 감소가 있었으며, 상태별 출력분포에 대해서 평활화를 적용한 경우 79%의 오식율을 감소 시킴을 알 수 있었다. 이러한 결과는 제안된 CDDN과 퍼지 평활화의 사용이 향상된 인식율을 얻는데 주요하며, 결과적으로 제안된 방법이 FVQ-HMM을 위한 강인한 출력확률의 추정을 위한 대안으로 유용함을 보여준다고 할 수 있다.

  • PDF

음성 인식을 이용한 증권 정보 검색 시스템의 개발 (Development of a Stock Information Retrieval System using Speech Recognition)

  • 박성준;구명완;전주식
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제6권4호
    • /
    • pp.403-410
    • /
    • 2000
  • 본 논문에서는 음성 인식을 이용한 증권 정보 검색 시스템의 개발에 대하여 기술하고 시스템의 주요 특징을 설명한다. 이 시스템은 DHMM (discrete hidden Markov model)에 기반을 두고, 유사 음소를 기본 인식 단위로 사용하였다. 끝점 검출과 반향 제거 기능을 포함시켜 사용자의 음성 입력이 편리하도록 만들었으며, 한 번의 음성 입력이 하나만의 단어가 아닌 여러 개의 단어가 될 수 있도록 연속 음성 인식기를 구현하였다. 상용화 이후의 몇 개월에 걸친 데이터를 이용하여 운용 결과를 분석하였다.

  • PDF

발화속도 적응적인 한국어 연속음 인식기 (Adaptive Korean Continuous Speech Recognizer to Speech Rate)

  • 김재범;박찬규;한미성;이정현
    • 한국정보처리학회논문지
    • /
    • 제4권6호
    • /
    • pp.1531-1540
    • /
    • 1997
  • 본 논문에서는 발화속도 측정과 이를 통한 보상방법을 통하여 성능 향상된 한국어 연속음 인식 시스템을 제안한다. 연속음 인식은 다양한 조음화 현상과 발화속도의 변화로 인하여 고립단어 인식에 비하여 어렵다. 따라서, 연속음 인식을 위해서는 조음화 현상과 발화속도의 변화를 모델링할 수 있는 방법이 필요하다. 본 논문에서는 발화속도를 포만트의 변화율로서 측정하였고, 이 정보를 이용하여 빠른 발화에서는 상대적으로 많은 특징벡터를 발생시켜 보상을 시도하였다. 또한 조음화 현상을 모델링하기 위하여 한국어의 다이폰 집합을 514개로 정의하였고, 훈련을 위한 음성 DB론느 ETRI의 445 단어 DB를 사용하였다. 이러한 방법을 결합한 한국어 연속음 인식기를 DHMM (Discrete Hidden Markov Model)으로 구현하여 인식률이 향상됨을 보였다.

  • PDF

HMM(Hidden Markov Model) 음성인식 알고리즘을 이용한 효율적인 음성인식 모듈 개발 설계에 관한 연구 (A Study on the Speech Recognition Moduleas Design Using HMM Speech Recognition Algorithm)

  • 김정훈;류홍석;강재명;강성인;이상배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.337-340
    • /
    • 2002
  • 본 논문에서는 휠체어 시스템에 화자 독립 고립단어 인식을 위한 임베디드 시스템 설계에 관한 내용을 서술한다. 실제 환경에서는 잡음이 포함되어 있어 인식률을 저하시키므로, 잡음을 제거하는 방식 중 가장 간단한 방식인 스펙트럼 차감법(Spectral subtraction method)을 사용하여 잡음을 제거했다 전처리 단계에서는 12차 LPC&Cepstrum 방식을 사용했고, 인식 알고리즘은 DHMM (Discrete Hidden Markov Model)을 전반부 인식기로 사용했다. 이 알고리즘을 적용하기 위해서는 데이터 간소화를 위해 벡터양자화(Vector Quantization) 처리가 전제되어야한다 또한 인식알고리즘은 인식률을 향상을 위해 후처리 인식기로 신경망(MLP:Multi-layer Perceptron)을 통해서 인식률을 향상시켰다 화자 독립 시스템에 맞는 인식 단어의 구성은 총 7개단어로 남녀 총 25명 목소리로 구성하였다. 그리고 하드웨어 구성은 32-bits floating point 방식인 TMS320C32를 적용했고, 메모리 부분은 4Mbyte로 설계를 했으며, 메인보드의 설계는 현재 완성 단계에 있다.

자동차 환경에서의 단독 숫자음 및 명령어 인식 (Isolated Digit and Command Recognition in Car Environment)

  • 양태영;신원호;김지성;안동순;이충용;윤대희;차일환
    • 한국음향학회지
    • /
    • 제18권2호
    • /
    • pp.11-17
    • /
    • 1999
  • 본 논문에서는 DHMM(Discrete Hidden Markov Model) 기반의 음성 인식 시스템에서 소음에 강인한 인식 성능을 얻기 위하여, 관찰 확률 스무딩(observation probability smoothing) 방법을 제안하고, 자동차 소음하에서의 음성 인식에 적합한 소음처리 기법을 실험을 통해 제시한다. 제안된 관찰 확률 스무딩 방법은 입력되는 음성의 특징벡터가 소음에 오염되어 양자화(vector quantization) 과정에서 적절한 코드워드(codeword)가 아닌 다른 코드워드로 양자화됨으로써 발생하는 인식성능 저하를 막기 위하여, 각각의 코드워드와 거리가 가까운 코드워드들의 관찰 확률값을 높여주는 방법이다. 이 밖에 자동차 소음에 대한 대처 방안으로 특징 벡터의 거리 측정시의 리프터(lifter) 사용, 고역 통과 필터(high pass filter) 사용, 스펙트럴 차감법(spectral subtraction) 사용 등의 성능을 평가한다. 인식 실험은 자동차 정지 중과 주행 중의 두 가지 상황에서 녹음된 한국어 단독 숫자음과 명령어 14단어에 대해 수행하였으며, 정지 중 97.4%와 주행 중 59.1%의 인식률로부터, 제안된 관찰 확률 스무딩 방법과 리프터, 고역 통과 필터, 스팩트럴 차감법의 소음 처리 기법을 추가한 결과, 정지 중 98.3%와 주행 중 88.6%의 인식률을 얻을 수 있었다.

  • PDF

방향성매매를 위한 지능형 매매시스템의 투자성과분석 (Analysis of Trading Performance on Intelligent Trading System for Directional Trading)

  • 최흥식;김선웅;박성철
    • 지능정보연구
    • /
    • 제17권3호
    • /
    • pp.187-201
    • /
    • 2011
  • 방향성(Direction)과 변동성(Volatility)에 대한 분석은 증권투자를 위한 시장분석의 기초가 된다. 변동성분석이 옵션 투자에서 중요하다면 주식이나 주가지수선물투자는 방향성분석에 의하여 투자성과가 결정된다. 기존의 금융분석에서 기계학습을 이용한 방향성에 대한 연구는 주가나 투자위험의 예측을 중심으로 이루어졌으며, 최근에 와서야 실전투자를 위한 매매시스템(trading system) 개발에 대한 연구가 이루어지고 있다. 인공지능형 주가예측모형에서는 ANN(artificial neural networks), fuzzy system, SVM(Support Vector Machine) 등의 기법이 주로 활용되고 있다. 본 연구에서는 방향성매매를 위한 지능형 기계학습방법 중에서도 패턴인식에서 좋은 성과를 보이고 있는 은닉마코프 모형(Hidden Markov Model)을 이용한다. 실무적으로는 방향성 예측을 위해 주로 주가의 추세분석(Trend Analysis)을 활용한다. 다양한 기술적 지표를 이용한 추세분석에 기반한 시스템트레이딩(System Trading) 기법은 실전투자에서 점차 확대추세에 있다. 본 연구에서는 시스템트레이딩 기법 중 실무에서 많이 이용되는 이동평균교차전략(moving average cross)에 연속 은닉마코프모형을 적용한 지능형 매매시스템을 제안하고, 실제 주가자료를 이용한 시뮬레이션 결과를 제시한다. 세계적 선물시장으로 성장한 KOSPI200 선물시장에서 제안된 매매시스템의 장기간의 투자성과를 분석하기 위하여 지난 21년 동안의 KOSPI200 주가지수자료를 실증 분석하였다. 분석결과는 KOSPI200 주가지수선물의 방향성매매에서 제안된 CHMM기반 지능형 매매시스템이 실전에서 일반적으로 활용되는 시스템트레이딩 기법의 투자성과를 개선할 수 있음을 보여주었다.

차량내에서의 음성인식에 관한 연구 (A Study on Speech Recognition inside the Car)

  • 박정훈;임형규;김종교
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1999년도 학술발표대회 논문집 제18권 1호
    • /
    • pp.56-60
    • /
    • 1999
  • 본 논문은, 자동차에서 발생할 수 있는 다양한 형태의 잡음이 섞인 음성을 대상으로, 잡음에 강인한 파라미터들을 사용하여 인식기들을 구축하였으며, 이들 파라미터를 비교 평가하였다. 실험에 사용된 음성 데이터는 차종, 속도, 도로 환경, 라디오 ON/OFF, 창문 개폐여부 등 다양한 잡음 환경에서 수집하였다. 실험에서 비교된 파라미터는 MFCC(Mel-Blrequency Cepstral Coefficient)와 PLP(Perceptually Linear Prediction) 이며, 각각의 파라미터에 대해서 MKM(Modified k-mean)을 이용하여 코드북을 작성하였고, DHMM(Discrete Hidden Markov Model)을 인식알고리즘으로 사용하였다. 실험 결과로서, 아스팔트 도로에서 창문을 닫고, 라디오를 켜지 않은 상태에서 60km/h로 주행시 $96.25\%$로 가장 높은 인식률을 얻었고, 고속도로에서 창문을 열고 100km/h로 주행시에는$60\%$로 가장 낮은 인식률을 얻었다.

  • PDF

코드북과 VQ 최적화에 의한 음소/고립단어 인식률 분석 (Analysis of Phoneme/Isolated Word Recognition Rate Using Codebook and VQ Optimization)

  • 안홍진;주상현;진원;김기두
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.675-678
    • /
    • 1999
  • 본 논문에서는 음소별 코드북 개수의 선택과 벡터 양자화에 따른 음소 인식률과 고립단어 인식률에 대하여 다룬다. 음성모델은 이산 확률 밀도를 갖는 DHMM(Discrete Hidden Markov Model)을 사용하였으며, 코드북 생성과 벡터 양자화 알고리즘으로는 K-means 알고리즘과 LBG(Linde, Buzo, Gray) 알고리즘을 사용하였다 음소별 코드북 개수와 벡터 양자화를 최적화함으로써 음소 인식률을 향상시킬 수 있으며, 그 결과 안정된 고립단어 인식률을 얻을 수 있다.

  • PDF