• Title/Summary/Keyword: Discrete element method (DEM)

Search Result 158, Processing Time 0.033 seconds

Discrete element analysis for design modification of leveling blade on motor grader vehicle (모터 그레이더 평탄작업용 블레이드의 설계개선을 위한 개별요소법 해석)

  • Song, Chang-Heon;Oh, Joo-Young;Cho, Jung-Woo;Kim, Mun-Gyu;Seok, Jeong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.423-438
    • /
    • 2021
  • The blade of motor grader is used for scattering and leveling the aggregates on the foundation of road construction site. The paper performed a design improvement research of the blade part to enhance the working efficiency of motor graders. The scattering works of aggregates by blade driving were simulated by DEM (discrete element method) of a dynamic code. The four design parameters were selected and a specific leveling scenario for the simulation was determined. The nine blade models were numerically experimented, and the sensitivity of each factors was analyzed. Next, the design factors that influence a blade performance have been selected by ANOVA, and these key design factors were applied to the progressive quadratic response surface method (PQRSM). The optimum set of design factors of the blade was finally proposed.

Evaluation of the Influence Factors on the Ballast Settlement by using the Discrete Element Method (개별요소법을 이용한 도상자갈 침하 영향인자 평가)

  • Kim, Ki Jae;Lee, Sung Jin;Jang, Seung Yup;Hwang, Sung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.715-722
    • /
    • 2016
  • Most of the domestic railroad tracks are ballast track and repetitive maintenance is required in this track. Therefore, it is necessary to optimize maintenance process for maintenance cost reduction and more effective maintenance. For this, it is important to develop a reasonable settlement progressive model of ballast layer. However, the behavior of ballast is different to that of soils, since ballast is composed of large coarse gravel. Thus, in this study, we carried out numerical analysis by using the discrete element method (PFC 2D) for better understanding of ballast settlement and development of reasonable settlement progressive model. And, we evaluated the settlement of ballast according to particles shape, porosity and loading conditions.

A Numerical Study on Passenger Evacuation in a Subway Station in Case of Fire Occurrence (화재 발생 지하철 역사에서의 여객 대피 해석에 관한 연구)

  • Kim, Chi-Gyeom;Lee, Sung-Won;Hur, Nahm-Keon;Nam, Seong-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.509-514
    • /
    • 2010
  • A numerical simulation of passenger evacuation in a subway station was performed by coupling the passenger flow analysis and the fire simulation. The algorithm of the passenger flow analysis was based on a DEM (Discrete Element Method) using the potential map of the direction vector for each passenger. This algorithm was improved in the present study as to use finer grid smaller than a passenger in order to resolve detailed geometry of the station and to resolve the behavior of passengers in the bottleneck at the ticket gate considering the collision of passengers to a wall or with other passengers. In the fire simulation, the CO distribution predicted by using CFD was used to take into account the effect of toxic gases on the passengers' mobility. The methodology proposed in the present study could be used in designing safer subway station in case of fire occurrence.

Effect of Friction Coefficient from DEM Simulation in Grinding Zone of the Ball Mill (볼 밀의 분쇄장에서 DEM 시뮬레이션을 통한 마찰계수 영향)

  • Jargalsaikhan, Battsetseg;Bor, Amgalan;Uranchimeg, Khulan;Lee, Jehyun;Choi, Heekyu
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.286-295
    • /
    • 2021
  • This study attempts to find optimal conditions of the friction coefficient using a discrete element method (DEM) simulation with various friction coefficient conditions and three different grinding media with various ball sizes in a traditional ball mill (TBM). Using ball motion of the DEM simulation are obtained using the optimal friction coefficient compared with actual motion; photographs are taken by the digital camera and the snapshot images are analyzed. In the simulation, the rotation speed of the mill, the materials and velocity of the grinding media, and the friction coefficient between the balls and the wall of the pot are fixed as the actual experimental conditions. We observe the velocity according to the friction coefficient from the DEM simulation. The friction coefficient is found to increase with the velocity. Milling experiments using a traditional ball mill with the same experimental conditions as those of the DEM simulation are conducted to verify the simulated results. In addition, particle morphology change of copper powder is investigated and analyzed using scanning electron microscopy (SEM) for the milling experiment.

Surface erosion of MICP-treated sands: Erosion function apparatus tests and CFD-DEM bonding model

  • Soo-Min Ham;Min-Kyung Jeon;Tae-Hyuk Kwon
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.133-140
    • /
    • 2023
  • Soil erosion can cause scouring and failures of underwater structures, therefore, various soil improvement techniques are used to increase the soil erosion resistance. The microbially induced calcium carbonate precipitation (MICP) method is proposed to increase the erosion resistance, however, there are only limited experimental and numerical studies on the use of MICP treatment for improvement of surface erosion resistance. Therefore, this study investigates the improvement in surface erosion resistance of sands by MICP through laboratory experiments and numerical modeling. The surface erosion behaviors of coarse sands with various calcium carbonate contents were first investigated via the erosion function apparatus (EFA). The test results showed that MICP treatment increased the overall erosion resistance, and the contribution of the precipitated calcium carbonate to the erosion resistance and critical shear stress was quantified in relation to the calcium carbonate contents. Further, these surface erosion processes occurring in the EFA test were simulated through the coupled computational fluid dynamics (CFD) and discrete element method (DEM) with the cohesion bonding model to reflect the mineral precipitation effect. The simulation results were compared with the experimental results, and the developed CFD-DEM model with the cohesion bonding model well predicted the critical shear stress of MICP-treated sand. This work demonstrates that the MICP treatment is effective in improving soil erosion resistance, and the coupled CFD-DEM with a bonding model is a useful and promising tool to analyze the soil erosion behavior for MICP-treated sand at a particle scale.

Prediction of the remaining time and time interval of pebbles in pebble bed HTGRs aided by CNN via DEM datasets

  • Mengqi Wu;Xu Liu;Nan Gui;Xingtuan Yang;Jiyuan Tu;Shengyao Jiang;Qian Zhao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.339-352
    • /
    • 2023
  • Prediction of the time-related traits of pebble flow inside pebble-bed HTGRs is of great significance for reactor operation and design. In this work, an image-driven approach with the aid of a convolutional neural network (CNN) is proposed to predict the remaining time of initially loaded pebbles and the time interval of paired flow images of the pebble bed. Two types of strategies are put forward: one is adding FC layers to the classic classification CNN models and using regression training, and the other is CNN-based deep expectation (DEX) by regarding the time prediction as a deep classification task followed by softmax expected value refinements. The current dataset is obtained from the discrete element method (DEM) simulations. Results show that the CNN-aided models generally make satisfactory predictions on the remaining time with the determination coefficient larger than 0.99. Among these models, the VGG19+DEX performs the best and its CumScore (proportion of test set with prediction error within 0.5s) can reach 0.939. Besides, the remaining time of additional test sets and new cases can also be well predicted, indicating good generalization ability of the model. In the task of predicting the time interval of image pairs, the VGG19+DEX model has also generated satisfactory results. Particularly, the trained model, with promising generalization ability, has demonstrated great potential in accurately and instantaneously predicting the traits of interest, without the need for additional computational intensive DEM simulations. Nevertheless, the issues of data diversity and model optimization need to be improved to achieve the full potential of the CNN-aided prediction tool.

Evaluation of the Relationship between Geogrid Rib Size and Particle Size Distribution of Ballast Materials using Discrete Element Method (개별요소해석법을 이용한 지오그리드 격자 크기와 도상자갈재료 입도분포 상관관계 평가)

  • Pi, Ji-Hyun;Oh, Jeongho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.143-149
    • /
    • 2016
  • This study evaluated the shear behavior of geogrid reinforced ballast material using a large scale direct shear test and discrete element method (DEM) based on PFC 3D program. The direct shear test was conducted on ballast materials that have different particle size distributions. Whereas the test results revealed that the shear strength generally increased with the larger particle size of ballast material without geogrid reinforcement, the shear behavior of ballast material was found to change pertaining to the relationship between particle size distribution and geogrid rib size. Generally, it is deemed the effectiveness of reinforcement can be achieved when the rib size is two times greater than average particle size. A numerical analysis based on DEM was conducted to verify the test results. The geogrid modeling was successfully completed by calibration process along with sensitivity analysis to have actual tensile strength provided by manufacturer. With a given geogrid model, the parametric evaluation was further carried out to examine the interactive behavior between geogrid and ballast material. Consequently, it was found that the effectiveness zone of geogrid reinforcement generated within a specific depth.

Evaluation of Screw Conveyor Model Performance depending on the Inclined Angle by Discrete Element Method (개별요소법을 활용한 경사각에 따른 스크루 컨베이어 모델 성능 평가)

  • Park, Byungkwan;Choi, Soon-Wook;Lee, Chulho;Kang, Tae-Ho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.379-393
    • /
    • 2019
  • For the economical construction of a tunnel by TBM, the selection of TBM optimized with the various project conditions is important, and also necessary to predict the performances of selected TBM in advance. This study was conducted to comprehensively evaluate the performance of the EPB shield TBM screw conveyor by the discrete element method. The sticky particles were used for the excavated material models, and screw conveyor with 11 different inclined angles were simulated to evaluate the performance depending on the different inclined angles. The four different rotational speed conditions of the screw were used, and torque, required power, extra energy for muck discharge, and the muck discharge rate were selected as four performance indicators. As a result, the optimized inclined angle was selected, and selected angle accords with the fact that EPB shield TBM screw conveyor is generally installed and adjusted at the inclined angle between 20.0° and 30.0° in the field.

Effect Analysis of Tillage Depth on Rotavator Shaft Load Using the Discrete Element Method (이산요소법을 활용한 경심이 로타리 작업기의 경운날 축 부하에 미치는 영향 분석)

  • Bo Min Bae;Dae Wi Jung;Dong Hyung Ryu;Jang Hyeon An;Se O Choi;Yeon Soo Kim;Sang Dae Lee;Seung Je Cho
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.115-122
    • /
    • 2023
  • This study utilized a discrete element method (DEM) simulation, as one of the virtual field trials, to predict the impact of tillage depth on the rotary blade shaft during rotavator tilling. The virtual field for the simulation was generated according to soil properties observed in an actual field. Following the generation of particles for the virtual field, a sequence of calibration steps followed to align the mechanical properties more closely with those of real soil. Calibration was conducted with a focus on bulk density and shear torque, resulting in calibration errors of just 0.02% for bulk density and 0.52% for shear torque. The prediction of the load on a rotary tiller's blade shaft involved a three-pronged approach, considering shaft torque, draft force, and vertical force. In terms of shaft torque, the values exhibited significant increases of 42.34% and 36.91% for every 5-centimeter increment in tillage depth. Similarly, the vertical force saw substantial growth by 40.41% and 36.08% for every 5-centimeter increment. In contrast, the variation in draft force based on tillage depth was comparatively lower at 18.49% and 0.96%, indicating that the effect of tillage depth on draft force was less pronounced than its impact on shaft torque and vertical force. From a perspective of agricultural machinery research, this study provides valuable insights into the DEM soil modeling process, accounting for changes in soil properties with varying tillage depths. These findings are expected to be instrumental in future agricultural machinery design studies.

Numerical simulation of the influence of interaction between Qanat and tunnel on the ground settlement

  • Sarfarazi, Vahab;Tabaroei, Abdollah
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.455-466
    • /
    • 2020
  • This paper presents analysis of the interaction between tunnel and Qanat with a particular interest for the optimization of Qanat shape using the discrete element code, PFC2D, and the results will be compared with the FEM results of PLAXIS2D. For these concerns, using software PFC2D based on Discrete Element Method (DEM), a model with dimension of 100m 100 m was prepared. A circular tunnel with dimension of 9 m was situated 20 m below the ground surface. Also one Qanat was situated perpendicularly above the tunnel roof. Distance between Qanat center and ground surface was 8 m. Five different shapes for Qanat were selected i.e., square, semi-circular, vertical ellipse, circular and horizontal ellipse. Confining pressure of 5 MPa was applied to the model. The vertical displacement of balls situated in ground surface was picked up to measure the ground subsidence. Also two measuring circles were situated at the tunnel roof and at the Qanat roof to check the vertical displacements. The properties of the alluvial soil of Tehran city are: γdry=19 (KN/㎥), E= 750 (kg/㎠), ν=0.35, c=0.3(kg/㎠), φ=34°. In order to validate the DEM results, a comparison between the numerical results (obtained in this study) and analytical and field monitoring have been done. The PFC2D results are compared with the FEM results. The results shows that when Qanat has rectangular shape, the tensile stress concentration at the Qanat corners has maximum value while it has minimum value for vertical ellipse shape. The ground subsidence for Qanat rectangular shape has maximum value while it has minimum value for ellipse shape of Qanat. The vertical displacements at the tunnel roof for Qanat rectangular shape has maximum value while it has minimum value for ellipse shape of Qanat. Historical shape of Qante approved the finding of this research.