• Title/Summary/Keyword: Discrete Noise

Search Result 508, Processing Time 0.026 seconds

Analysis of Non-Uniform Inflow Fan Noise (비균일 입류에 의한 팬소음 해석)

  • Chung, Ki-Hoon;Choi, Han-Lim;Yun, Young-Il;Lee, Sang-Hyeon;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.106-112
    • /
    • 2000
  • Axial fans are widely used in heavy machines due to their ability to produce high flow rate for cooling of engines. At the same time. the noise generated by these fans causes one of the most serious problems. This work is concerned with the low noise technique of discrete frequency noise. The prediction model. which allowed the calculation of acoustic pressure at the blade passing frequency and it's harmonics. has been developed by Farrasat. This theory is founded upon the acoustic radiation of unsteady forces acting on blade. To calculate the unsteady resultant force over the fan blade. Time-Marching Free-Wake Method are used. The fan noise of fan system having unsymmetric engine-room is predicted. In this paper, the discussion is confined to the performance and discrete noise of axial fan and front part of engine room in heavy equipments.

  • PDF

An Efficient and Easy Discretizing Method for the Treatment of Noise Factors in Robust Design

  • Lanzotti, Antonio;Vanacore, Amalia
    • International Journal of Quality Innovation
    • /
    • v.8 no.3
    • /
    • pp.188-197
    • /
    • 2007
  • In this work, an efficient and easy statistical method to find an equivalent discrete distribution for a continuous random variable (r.v.) is proposed. The proposed method is illustrated by applying it to the treatment of the anthropometrical noise factors in the context of Robust Ergonomic Design.

Noise Radiation Analysis of the Cooling Fan in a Heavy Equipment (중장비 팬의 엔진룸을 통한 소음방사 해석)

  • 정기훈;전완호;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.954-960
    • /
    • 2001
  • Axial fans are widely used in heavy machines due to their ability to produce high cooling of engines. At the same time. the noise generated by these fans causes or serious problems. This work is concerned with the low noise technique of discrete. The prediction model. which allowed the calculation of acoustic pressure at the frequency and it's harmonics, has been developed by Farrasat and the Helmholtz-Kir. The newly developed Helmholtz-Kirchhoff BEM for thin body is used to calculate the sound field of the fan that is located in a engine room. To calculate the unsteady resultant force over blade. Time-Marching Free-Wake Method are used. The fan noise of fan sys unsymmetric engine-room is predicted. In this paper. the discussion is confined to and discrete noise of axial fan and front Part of engine room in heavy equipments.

  • PDF

Design of the fast adaptive digital filter for canceling the noise in the frequency domain (주파수 영역에서 잡음 제거를 위한 고속 적응 디지털 필터 설계)

  • 이재경;윤달환
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.231-238
    • /
    • 2004
  • This paper presents the high speed noise reduction processing system using the modified discrete fourier transform(MDFT) on the frequency domain. The proposed filter uses the linear prediction coefficients of the adaptive line enhance(ALE) method based on the Sign algorithm The signals with a random noise tracking performance are examined through computer simulations. It is confirmed that the fast adaptive digital filter is realized by the high speed adaptive noise reduction(HANR) algorithm with rapid convergence on the frequency domain(FD).

A Study on the Noise Reduction of the Engine Cooing Fan of a Express Bus by Modification of Design Parameters (설계 파라미터 변경에 의한 고속 버스용 엔진 냉각 홴의 저소음화 연구)

  • 이유엽;조용구;이충휘;오재응
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.258-265
    • /
    • 2003
  • This paper suggests the noise reduction method of the engine cooling fan. The fan noise contribution to the OASPL of engine room was estimated and the noise source was identified for the rotating fan by sound intensity method. And the program for Predicting the noise spectrum of axial flow fan was also developed. The radiated acoustic pressure is expressed in terms of discrete frequency noise Peaks at BPF and its harmonics and the line spectrum at the broad band by the proposed noise generation mechanisms. In this Paper, it Is shown that the comparison of the measured and calculated noise spectra of fan validates the noise predicting program. And this paper presents the characteristics of the fan noise in order to modify the design parameters. Accordingly, the design parameters were determined for the noise reduction of the fan.

Aero-acoustic Performance Analysis Method of Regenerative Blower (재생형 송풍기의 공력음향학적 성능 해석 방법)

  • Lee, Chan;Kil, Hyun Gwon;Kim, Gang Chun;Kim, Jun Gon;Ma, Jae Hyun;Chung, Kyung Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.2
    • /
    • pp.15-20
    • /
    • 2013
  • An aero-acoustic performance analysis method of regenerative blower is developed as one of the FANDAS codes. The aerodynamic performance of regenerative blower is predicted by using momentum exchange theory coupled with pressure loss and leakage flow models. Based on the performance prediction results, the noise level and spectrum of regenerative blower are predicted by discrete frequency and broadband noise models. The combination of the performance and the noise prediction methods gives aero-acoustic performance map and noise spectrum analysis results, which are well-agreed with the actual measurement results within a few percent relative error.

Prediction of Frequency Modulation of Discrete Noise for Random Pitch Cross-Flow Fans by Unsteady Viscous Flow Computations (비정상 점성 유동 해석에 의한 부등피치 횡류홴의 이산소음 주파수 변조 특성 예측)

  • Yong Cho;Young J. Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.366.2-366
    • /
    • 2002
  • Unsteady flow characteristics and associated blade tonal noise of a cross-flow fan are predicted by a computational method. The incompressible Wavier-Stokes equations are time-accurately solved for obtaining the pressure fluctuations between the rotating blades and the stabilizer, and sound pressure is predicted using Curie's equation. The computed fan performance is favorably compared with experimental data, and also indicates that the performance is not significantly altered by the random pitch effect at ø〉0.4. (omitted)

  • PDF

Advanced Sound Source Localization Study Using De-noising Filter based on the Discrete Wavelet Transform(DWT) (이산 웨이블릿 변환 기반 디-노이징 필터를 이용한 향상된 음원 위치 추정 연구)

  • Hwang, Bo-Yeon;Jung, Jae-Hoon;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1185-1192
    • /
    • 2015
  • In this paper, a study of advanced sound source localization is conducted by eliminating the noise of the sound source using the discrete wavelet transform. And experiments are conducted to evaluate the performance of the proposed system that the mobile robot follows sound source stably. In addition, we compare the position estimation performance by applying a discrete wavelet transform to improve the reliability of the sound signal. The experimental results reveal that the de-nosing filter which removes the noise component in sound source can make the performance of position estimation more precisely and help the mobile robot distinguish the objective sound source clearly.

Dynamic Response of a Beam Structure with Discrete Supports Subjected to a Moving Mass (이동질량에 의한 이산지지 보 구조물의 동적응답)

  • Oh, B.J.;Ryu, B.J.;Lee, G.S.;Lee, Y.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.264-270
    • /
    • 2011
  • This paper deals with dynamic response of a beam structure with discrete spring-damper supports under a moving mass. Governing equations of motion taking into account of all inertia effects of the moving mass were derived by Galerkin's mode summation method, and Runge-Kutta integration method was applied to solve the differential equations. The effects of the speed of the moving mass, spring stiffness, damping coefficient, span number of a beam structure, mass ratio of the moving mass on the dynamic response of the beam structure have been studied. Some numerical results provide design engineers for the beam structure design with discrete supports under a moving mass.

Robust Design of a Discrete System Using Taguchi's Standard Signal-to-Noise Ratio (다구치의 표준 SN비를 이용한 이산형 시스템의 로버스트설계)

  • Kim, Seong-Jun
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.2
    • /
    • pp.101-111
    • /
    • 1999
  • The purpose of Taguchi's robust design lies in quality improvement by making the performance of a system robust against noise. Robust design with continuous performance characteristics has been the subject of much interest. However relatively little work has been done for discrete characteristics such as 0-1, good-medium-bad, etc. This paper is concerned with robust design of a discrete dynamic system. We first investigate the Taguchi method for robust design with discrete dynamic characteristics and discuss his standard error probability (SEP). Then we propose a generalized SEP, which makes it possible to encompass a wider class of robust design problems. An illustration is also given by example.

  • PDF