• Title/Summary/Keyword: Discovery Reception Probability

Search Result 4, Processing Time 0.015 seconds

Performance Analysis of Random Resource Selection in LTE D2D Discovery (LTE D2D 디스커버리에서 무작위 자원 선택 방법에 대한 성능 분석)

  • Park, Kyungwon;Kim, Joonyoung;Jeong, Byeong Kook;Lee, Kwang Bok;Choi, Sunghyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.3
    • /
    • pp.577-584
    • /
    • 2017
  • Long Term Evolution device-to-device (LTE D2D) is a key technology to mitigate data traffic load in a cellular system. It facilitates direct data exchange between neighboring users, which is preceded by D2D discovery. Each device advertises its presence to neighboring devices by broadcasting its discovery message. In this paper, we develop a mathematical analysis to assess the probability that discovery messages are successfully transmitted at the D2D discovery stage. We make use of stochastic geometry for modeling spatial statistics of nodes in a two dimensional space. It reflects signal to noise plus interference ratio (SINR) degradation due to resource collision and in-band emission, which leads to the discovery message reception probability being modeled as a function of the distance between the transmitter and the receiver. Numerical results verify that the newly developed analysis accurately estimates discovery message reception probabilities of nodes at the D2D discovery stage.

Neighbor Discovery in a Wireless Sensor Network: Multipacket Reception Capability and Physical-Layer Signal Processing

  • Jeon, Jeongho;Ephremides, Anthony
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.566-577
    • /
    • 2012
  • In randomly deployed networks, such as sensor networks, an important problem for each node is to discover its neighbor nodes so that the connectivity amongst nodes can be established. In this paper, we consider this problem by incorporating the physical layer parameters in contrast to the most of the previous work which assumed a collision channel. Specifically, the pilot signals that nodes transmit are successfully decoded if the strength of the received signal relative to the interference is sufficiently high. Thus, each node must extract signal parameter information from the superposition of an unknown number of received signals. This problem falls naturally in the purview of random set theory (RST) which generalizes standard probability theory by assigning sets, rather than values, to random outcomes. The contributions in the paper are twofold: First, we introduce the realistic effect of physical layer considerations in the evaluation of the performance of logical discovery algorithms; such an introduction is necessary for the accurate assessment of how an algorithm performs. Secondly, given the double uncertainty of the environment (that is, the lack of knowledge of the number of neighbors along with the lack of knowledge of the individual signal parameters), we adopt the viewpoint of RST and demonstrate its advantage relative to classical matched filter detection method.

Probabilistic Neighbor Discovery Algorithm in Wireless Ad Hoc Networks (무선 애드혹 네트워크에서의 확률적 이웃 탐색 기법)

  • Song, Taewon;Park, Hyunhee;Pack, Sangheon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.9
    • /
    • pp.561-569
    • /
    • 2014
  • In wireless ad hoc networks, neighbor discovery is essential in the network initialization and the design of routing, topology control, and medium access control algorithms. Therefore, efficient neighbor discovery algorithms should be devised for self-organization in wireless ad hoc networks. In this paper, we propose a probabilistic neighbor discovery (PND) algorithm, which aims at reducing the neighbor discovery time by adjusting the transmission probability of advertisement messages through the multiplicative-increase/multiplicative-decrease (MIMD) policy. To further improve PND, we consider the collision detection (CD) capability in which a device can distinguish between successful reception and collision of advertisement messages. Simulation results show that the transmission probabilities of PND and PND with CD converge on the optimal value quickly although the number of devices is unknown. As a result, PND and PND with CD can reduce the neighbor discovery time by 15.6% to 57.0% compared with the ALOHA-like neighbor discovery algorithm.

Stable Message Transmission Protocol Considering Remaining Energy of Nodes on Wireless Networks (무선네트워크에서 노드의 에너지를 고려한 종단간 안정성 있는 메시지 전송 프로토콜)

  • Duong, Mai Dinh;Kim, Myung-Kyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1215-1223
    • /
    • 2014
  • In multi-hop wireless networks, a message transmission path is set up on demand by a route discovery step, where a shortest path is used in general. The shortest path, however, normally uses the nodes near the center area, which causes a high traffic load in that area and reduces the message transmission reliability. We propose a stable routing protocol considering the remaining energy of nodes. Our protocol uses ETX as a link performance estimator and tries to avoid the nodes with smaller energy. By doing this, we can reduce the route failure probability and packet loss. We have evaluated the performance of the proposed protocol using QualNet and compared with AODV and MRFR protocols. The simulation result shows that our protocol has a similar performance as MRFR in terms of end-to-end message reception ratio, average message delay and delay jitter, but outperforms MRFR in terms of traffic load distribution.