• 제목/요약/키워드: Discogenic back pain

검색결과 27건 처리시간 0.021초

Thermal-Induced Osteonecrosis of Adjacent Vertebra after Intradiscal Electrothermal Therapy

  • Kim, Soonjoon;Lee, Sun-Ho;Kim, Eun-Sang;Eoh, Whan
    • Journal of Korean Neurosurgical Society
    • /
    • 제60권1호
    • /
    • pp.114-117
    • /
    • 2017
  • A 42-year-old man was admitted to our hospital with complaints of low back pain and intermittent right thigh pain. Twelve weeks before admission, the patient received intradiscal electrothermal therapy (IDET) at a local hospital. The patient still reported low back pain after the procedure that was managed with narcotic analgesics. Follow-up magnetic resonance imaging (MRI) was performed, and his referring physician thought the likely diagnosis was spondylodiscitis at the L4-5 spinal segment with a small epidural abscess. At admission to our department, the patient reported aggravated low back pain. Blood test results, including the erythrocyte sedimentation rate and C-reactive protein levels, were slightly elevated. Biopsy samples of the L4, L5 vertebral bodies and disk were obtained. The material underwent aerobic, anaerobic, fungal, mycobacterial cultures and histologic examination. Results of all cultures were negative. Histologically, necrosis of the bone was evident from the number of empty osteocyte lacunae. In addition, there was no evidence of infection based on biopsy results. No antibiotic treatment was administered on discharge. Repeat computed tomography and MRI performed 12 months after IDET showed a bony defect in the L4 and L5 vertebral bodies, and a decrease in the size of the L4-5 intervertebral disc lesion. We report a case of lumbar vertebral osteonecrosis induced by IDET and discuss etiology and radiologic features.

요천추부 염좌로 진단된 급성 요통 환자의 방사선학적 소견과 치료기간에 대한 임상적 고찰 - X-ray와 CT 소견 분석 - (Radiological Findings and Treatment Period of Acute Low Back Pain Patients Diagnosed as Having Lumbar Sprain and Strain - with Focus on X-ray and CT Findings -)

  • 고필성;이원일;조병진;권신애;이정우;김민정;서병관;우현수;백용현;김재규;박동석
    • Journal of Acupuncture Research
    • /
    • 제27권4호
    • /
    • pp.19-28
    • /
    • 2010
  • Objectives : To demonstrate the need for differential diagnosis between discogenic pain and lumbar sprain and strain in acute low-back pain patients. Methods : Outpatients who made their first visits during May 1, 2009 to Oct. 30, 2009(n=53) were examined by history taking, physical examination, X-rays, and CT imaging. Disorders found on lumbosacral spine X-ray cuts and those on lumbosacral spine CT images were separately recorded. The relationship between treatment period, disc space narrowing and disc degeneration on X-rays, and HIVD on CT images was examined. Results : 1. Correlation between disc space narrowing on X-rays and HIVD found on CT images was analyzed. 21(72.41%) out of 29 patients having disc space narrowing on X-rays and HIVD on CT at the same level required treatment for over 8 weeks. 2. 2(50%) out of 4 Lawrence classification grade I patients, 8(66.67%) out of 12 grade II patients, and 14(70%) out of 20 grade III patients needed treatment for over 8 weeks. Conclusions : Disc space narrowing on X-ray and HIVD on CT at the same level, or disc space narrowing and disc degeneration on X-ray image alone indicate a tendency for treatment periods over 8 weeks, which is longer than the conventional treatment period for lumbar strain and sprain.

디스크의 전기열치료시 수술변수에 관한 연구 (An Investigation on Surgical Parameters for the Treatment of Intervertebral Disc during Electrothermal Therapy)

  • 진의덕;최진승;탁계래;이봉수;이법이
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.513-514
    • /
    • 2006
  • Recently intradiscal electrothermal therapy is introduced, which is a new and minimally invasive technique fer the treatment of discogenic low back pain. This procedure involves the percutaneous threading of a flexible catheter into the disc under fluoroscopic guidance. The catheter, composed of thermal resistive coil, heats the posterior annulus of the disc, causing contraction of collagen fibers and destruction of afferent nociceptors. This study tries to investigate the effects of the important factors of this procedure such as heat source temperature and heat applying time on the temperature distribution within the intervertebral disc. This study utilized both computer simulation and the experiment for the verification of finite element analysis. FE analysis was carried out with ANSYS v7.0 (ANSYS Inc, USA) using 10,980 number of brick element and 12,551 number of node. The functional spinal units of 5 month old swine were used for the experiment and the temperature was monitored using 10 channel temperature measurement device MV200. Through this study, it was able to analyze the temperature range of inner intervertebral disc by two mechanisms which are known to alleviate pain clinically. The results showed that when the heat source temperature was kept up 80 degree for 1,020 seconds, the temperature of inner annulus reached at 45 degree up to the distance of 15.6mm from heat source, which explains coagulation of inner annulus by heat. When the same heat source was used, the temperature of inner nucleus reached at 60 degree up to the distance of 9mm from heat source, which explains contraction of inner nucleus by heat.

  • PDF

인공디스크에 대한 생체역학적 분석 (Biomechanical Analysis of the Artificial Discs)

  • 김영은;윤상석;정상기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.907-910
    • /
    • 2005
  • Although several artificial disc designs have been developed for the treatment of discogenic low back pain, biomechanical change with its implantation was rarely studied. To evaluate the effect of artificial disc implantation on the biomechanics of functional spinal unit, nonlinear three-dimensional finite element model of L4-L5 was developed with 1-mm CT scan data. Two models implanted with artificial discs, SB $Charit\acute{e}$ or Prodisc, via anterior approach were also developed. The implanted model predictions were compared with that of intact model. Angular motion of vertebral body, force on spinal ligaments and facet joint, and the stress distribution of vertebral endplate for flexion-extension, lateral bending, and axial rotation with a compressive preload of 400 N were compared. The implanted model showed increased flexion-extension range of motion and increased force in the vertically oriented ligaments, such as ligamentum flavum, supraspinous ligament and interspinous ligament. The increase of facet contact force on extension were greater in implanted models. The incresed stress distribution on vertebral endplate for implanted cases indicated that additinal bone growth around vertebral body and this is matched well with clinical observation. With axial rotation moment, relatively less axial rotation were observed in SB $Charit\acute{e}$ model than in ProDisc model.

  • PDF

인공추간판 적용 시 인접 운동 분절에서의 변화 분석 (Analysis of biomechanical change of adjacent motion segment of the lumbar spine with an implanted artificial disc)

  • 김영은;윤상석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.244-247
    • /
    • 2005
  • Although several artificial disc designs have been developed for the treatment of discogenic low back pain and used clinically, biomechanical change with its implantation seldom studied. To evaluate the effect of artificial disc implantation on the biomechanics of lumbar spinal unit, nonlinear three-dimensional finite element model of L1-L5, S1 was developed and strain and stress of vertebral body and surrounding spinal ligaments were predicted. Intact osteoligamentous L1-L5, S1 model was created with 1-mm CT scan of a volunteer and known material property of each element were applied. This model also includes the effect of local muscles which was modeled with pre-strained spring elements. The intact model was validated with reported biomechanical data. Two models implanted with artificial discs, SB Charite or Prodisc, at L4/5 via anterior approach were also developed. The implanted model predictions were compared with that of intact model. Angular motion of vertebral body, force on spinal ligaments, facet joint contact force with $2\sim12$ Nm flexion-extension moment.

  • PDF

Correlation between Epidurographic Contrast Flow Patterns and Clinical Effectiveness in Chronic Lumbar Discogenic Radicular Pain Treated with Epidural Steroid Injections Via Different Approaches

  • Gupta, Ruchi;Singh, Saru;Kaur, Sukhdeep;Singh, Kulvinder;Aujla, Kuljeet
    • The Korean Journal of Pain
    • /
    • 제27권4호
    • /
    • pp.353-359
    • /
    • 2014
  • Background: Epidural steroid injections are an accepted procedure for the conservative management of chronic backache caused by lumbar disc pathology. The purpose of this study was to evaluate the epidurographic findings for the midline, transforaminal and parasagittal approaches in lumbar epidural steroid injections, and correlating them with the clinical improvement. Methods: Sixty chronic lower back pain patients with unilateral radiculitis from a herniated/degenerated disc were enrolled. After screening the patients according to the exclusion criteria and randomly allocating them to 3 groups of 20 patients, fluoroscopic contrast enhanced epidural steroids were injected via midline (group 1), transforaminal (group 2) and parasagittal interlaminar (group 3) approaches at the level of the pathology. The fluoroscopic patterns of the three groups were studied and correlated with the clinical improvement measured by the VAS over the next 3 months; any incidences of complications were recorded. Results: The transforaminal group presented better results in terms of VAS reduction than the midline and parasagittal approach groups (P < 0.05). The epidurography showed a better ventral spread for both the transforaminal (P < 0.001) and the paramedian approaches (P < 0.05), as compared to the midline approach. The nerve root filling was greater in the transforaminal group (P < 0.001) than in the other two groups. The ventral spread of the contrast agent was associated with improvement in the VAS score and this difference was statistically significant in group 1 (P < 0.05), and highly significant in groups 2 and 3 (P < 0.001). In all the groups, any complications observed were transient and minor. Conclusions: The midline and paramedian approaches are technically easier and statistically comparable, but clinically less efficacious than the transforaminal approach. The incidence of ventral spread and nerve root delineation show a definite correlation with clinical improvement. However, an longer follow-up period is advisable for a better evaluation of the actual outcom.

순간중심 고정식 및 이동식 인공디스크 적용에 대한 유한요소 모델을 이용한 생체역학적 분석 (Biomechanical Analysis of the Implanted Constrained and Unconstrained ICR Types of Artificial Disc using FE Model)

  • 윤상석;정상기;김영은
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.176-182
    • /
    • 2006
  • Although several artificial disc designs have been developed for the treatment of discogenic low back pain, biomechanical changes with its implantation were rarely studied. To evaluate the effect of artificial disc implantation on the biomechanics of functional spinal unit, a nonlinear three-dimensional finite element model of L4-L5 was developed with 1-mm CT scan data. Biomechanical analysis was performed for two different types of artificial disc having constrained and unconstrained instant center of rotation(ICR), ProDisc and SB Charite III model. The implanted model predictions were compared with that of intact model. Angular motion of vertebral body, forces on the spinal ligaments and facet joint, and stress distribution of vertebral endplate for flexion-extension, lateral bending, and axial rotation with a compressive preload of 400N were compared. The implanted model showed increased flexion-extension range of motion compared to that of intact model. Under 6Nm moment, the range of motion were 140%, 170% and 200% of intact in SB Charite III model and 133%, 137%, and 138% in ProDisc model. The increased stress distribution on vertebral endplate for implanted cases could be able to explain the heterotopic ossification around vertebral body in clinical observation. As a result of this study, it is obvious that implanted segment with artificial disc suffers from increased motion and stress that can result in accelerated degenerated change of surrounding structure. Unconstrained ICR model showed increased in motion but less stress in the implanted segment than constrained model.