• Title/Summary/Keyword: Discharging Area

Search Result 112, Processing Time 0.027 seconds

Augmentation and Monitoring of an Endangered Fish, Gobiobotia naktongensis in Naeseongcheon Stream, Korea (내성천에서 멸종위기어류 흰수마자 Gobiobotia naktongensis의 증강도입과 모니터링)

  • Na, Jin-Young;Choi, Byoung-Seub;Hwang, Sang-Chul;Yang, Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.3
    • /
    • pp.216-223
    • /
    • 2015
  • The conservation project to protect an endangered fish, Gobiobotia naktongensis was executed against declining the gene diversity of the fish after the construction of Youngju Dam in a sand-bed stream (Naeseongcheon Stream). We tried to move the populations of G. naktongensis from submerged planned sites to alternative habitats, bred artificially and augmented the juveniles to optimal habitat, and monitored the results of the restoration implementation. No entity of G. naktongensis was confirmed at the planned submerged sites despite attempting to capture more than 8 times and eventually the movement to alternative habitat could not be implemented. About 40 individuals of G. naktongensis were captured in the Naeseongcheon Stream and a total of 5,000 individuals were artificially spawned up. The population of juvenile inherited the genetic diversity from the brood stock. The bred juveniles were discharged at the selected optimal site that had a habit condition what was similar to their natural habitat. The micro-dispersion around the discharging area was found at the early stages of the augmentation. The re-capturing rate of discharged juveniles was reduced as time passed. The discharged juveniles seemed to adapt to the natural environment of Naeseongcheon Stream. The observation of their high abdominal distension and excrement demonstrated that the juveniles fed successfully in the discharging area. Therefore, securement of genetic homogeneity and enhancement of restoration population of G. naktongensis in upstream and downstream of Youngju Dam site from the artificial seed producing seemed to be primarily successful and long-term monitoring and analysis of the effect was expected to be necessary.

Hydrochemical and Isotopic Characteristics of Major Streams in the Daejeon Area (대전지역 도심하천의 수리화학적 및 동위원소적 특성)

  • Jeong, Chan-Ho;Moon, Byung-Jin
    • Economic and Environmental Geology
    • /
    • v.42 no.4
    • /
    • pp.315-333
    • /
    • 2009
  • In this study, the hydrochemical and the isotopic characteristics of major streams in the Daejeon area were investigated during rainy and dry seasons. The stream water shows the electrical conductivity of the range of $37{\sim}527{\mu}s$/cm, and pH $6.21{\sim}9.83$. The chemical composition of stream waters can be grouped as three types: the upper streams of Ca(Mg)-$HCO_3$ type, Ca(Mg)-$SO_4(Cl)$ type of middle streams flowing through urban area, and Na(Ca)-$HCO_3$(Cl, $SO_4$) type of the down streams. Based on in-situ investigation, the high pH of stream waters flowing through urban area is likely to be caused by the inflow of a synthetic detergent discharging from the apartment complex. The electrical conductivity of stream waters at a dry season is higher than those of at a rainy season. We suggest that the hydro-chemical composition of stream waters in the Daejeon area was affected by the discharging water from the sewage treatment facilities and anthropogenic contaminants as well as the interaction with soil and rocks. ${\delta}D$ and ${\delta}^{18}O$ values of the stream waters show the relationship of ${\delta}D=6.45{\delta}^{18}O-7.4$, which is plotted at a lower area than global meteoric water line(GMWL) of Craig(1961). It is likely that this isotopic range results from the evaporation effect of stram waters and the change of an air mass. The isotope value shows an increasing trend from upper stream to lower stream, that reflects the isotopic altitude effect. The relationship between ${\delta}^{13}C$ and $EpCO_2$ indicates that the carbon as bicarbonate in stream water is mainly originated from $CO_2$ in the air and organic materials. The increasing trend of ${\delta}^{13}C$ value from upper stream waters to lower stream waters can be attributed to the following reasons: (1) an increasing dissolution of $CO_2$ gas from a contaminated air in downtown area of the Daejeon, and (2) the increment of an inorganic carbon of groundwater inflowed into stream by base flow. Based on the relationship between ${\delta}^{34}S$ and $SO_4$ of stream waters, the stream waters can be divided into four groups. $SO_4$ content increases as a following order: upper and middle Gab stream${\delta}^{34}S$ value decreases as above order. ${\delta}^{34}S$ value indicates that sulfur of stream waters is mainly originated from atmosphere, and is additionally supplied by pyrite source according to the increase of sulfate content. The sulfur isotope analysis of a synthetic detergent and sewage water as a potential source of the sulfur in stream waters is furtherly needed.

Study of the Flow Characteristics of Supersonic Coaxial Jets (초음속 동축제트의 유동특성에 관한 연구)

  • Lee, Gwon-Hui;Gu, Byeong-Su;Kim, Hui-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1702-1710
    • /
    • 2001
  • Supersonic coaxial jets are investigated numerically by using the axisymmetric, Wavier-Stokes equations which are solved using a fully implicit finite volume method. Three different kinds of coaxial nozzles are employed to understand the flow physics involved in the supersonic coaxial jets. Two convergent-divergent supersonic nozzles are designed to have the same Mach number 2.0, and used to compare the coaxial jet flows with those discharging from one constant-area nozzle. The impingement angle of the annular jets are varied. The primary pressure ratio is changed in the range from 2.0 to 10.0 and the assistant jet ratio from 1.0 to 3.0. The results obtained show that the fluctuations of the total pressure and Mach number along the jet axis are much higher in the constant-area nozzle than those in the convergent-divergent nozzles, and the constant-area nozzle lead to higher total pressure losses, compared with the convergent-divergent nozzles. The assistant jets from the annular nozzle affect the coaxial jet flows within the distance less than about ten times the nozzle throat diameter, but beyond it the coaxial jet is conical with self-similar velocity profiles. Increasing both the primary jet pressure ratio and the assistant jet pressure ratio produces a longer coaxial jet core.

A Study on Efficient Improvement Method of Rainwater Utilization Facilities in Jeju Island (제주지역 빗물이용시설의 효율적 개선방안 연구)

  • Park, Won-Bae;Moon, Deok-Cheol;Koh, Gi Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • This study is to suggest a few efficient ways of rainwater utilization, through monitoring and analyzing 143 rainwater storage systems and 110 artificial recharge systems, which are installed in the recommended facilities by law, among the rainwater harvesting systems in Jeju Island. In the case that catchment facilities are damaged, rainwater could be contaminated by leaves and debris so that the rates of rainwater usages come to be lower. It is possible that contaminated rainwater could contaminate artificial recharge wells or rainwater discharging out of the rainwater harvesting system could result in flood and damage for the downgradient area. For maintaining high quality of rainwater and increasing rainwater utilization rate, it is necessary to install screening facilities and purification plant functioning precipitation and filtration. Also, in order to efficiently preclude the overflowing rainwater exceeding storage capacity, it is recommended to associate rainwater storage tanks with artificial recharge well or infiltration trench facilities.

Evaluation of Heavy Metal Contamination in Geochemical Environment around the Abandoned Coal Mine - With special reference to geochemical environment around the Imgok Creek in the Gangreung Coal Field - (폐석탄광 주변 지구화학적 환경의 중금속 오염 평가 - 강릉탄전 임곡천 일대를 중심으로 -)

  • Chon, Hyo-Taek;Kim, Ju-Yong;Choi, Si-Young
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.499-508
    • /
    • 1998
  • The Imgok Creek is located in the Gangreung coal field, which has been known that sulfides are more abundant than other coal fields in Korea, and it has been severly contaminated by acid mine drainage (AMD) discharging from the abandoned coal mines, such as the Youngdong, the Dongduk and the Waryong coal mines. The purposes of this study are to synthetically assess the contamination of natural water, stream sediment and cultivated soils, and to provide the basic data for AMD treatment. Geochemical samples were collected in December, 1996 (dry season) and April, 1997 (after three day's rainfall). TDS of the Youngdong mine water was remarkably higher than those of other mine waters. In the Imgok Creek, concentrations of most elements, except Fe decreased with distance by dilution caused by the inflow of uncontaminated tributaries. From the results of NAMDI and $I_{geo}$ calculation, the Youngdong coal mine was the main contamination source of the study area. Groundwater pollution was not yet confirmed in this study and the paddy and farm land soils were also not yet contaminated by mining activity based on the pollution index ranging from 0.27 to 0.47.

  • PDF

A Practical Research for More Efficient Utilization of Water Resources in the South-Western Part of Korea (서남부지역 수자원의 효율적 이용방안)

  • 김현영;서영제;최용선;문종원
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.279-286
    • /
    • 1998
  • The south-western part of Korea is situated in an unbalance of water supply and demand relating to the Keum, Mankyung, Dongjin and Youngsan River and their estuary reservoirs. For example, the Keum River estuary reservoir is discharging the larger amount of yearly runoff into the sea due to the small storage capacity, while Saemankeum estuary reservoir which is under construction, has the smaller runoff amount comparing with its storage capacity, And the downstream area of the Youngsan River, such as Youngkwang, Youngam are deficient in water due in larger demand and smaller supply. In order to solve the above unbalanced water supply and demand and also to improve the water use efficiency, the Hierarchical Operation Model for Multi-reservoir System(HOMMS) has been developed and applied to analyze the multi-reservoir operation assuming that the above reservoirs were linked each other. The result of this study shows that 2,148MCM of annual additional water requirement for agricultural and rural water demands are required in this region at 2011 of target year, and these demands can be resolved by diverting and reusing 1,913MCM of the released water from the estuary reservoirs into the sea.

  • PDF

A Study on the Characteristics of Pollutant Loads in Kamak Bay Watershed (駕莫灣 流域의 汚染負荷 特性에 관한 硏究)

  • 이대인;조현서
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.945-954
    • /
    • 2002
  • The objective okgf this study is understanding and evaluation of temporal and spatial variation of pollutant loads by input sources for water quality management in Kamak Bay. Flow rate of rivers and ditches ranges from about $2,592-63,072m^3/d$ in October to $864-55,296m^3/d$ in January. In particular, the R2 predominated flow rate among input sources. Total COD, BOD, DIN and DIP loadings in January were about 896kg/d, 718kg/d, 2,152kg/d, and 154kg/d, respectively, which exceeded those of October. Lower POC/TOC levels are estimated in R2, and also in October. Temporal variation of pollutant loads were closely related to the human activity. Total discharging loadings of BOD, TN and TP by unit loading estimation were 4,993.0kg/d, 2,558.7kg/d, and 289.2kg/d, respectively, and were mainly affected by the population. Runoff ratio of BOD was about 0.14 in January Mean $NH_4^+_-N$ and $PO_4\;^{3-}-P$ loadings from sediment were 16.23mg/$m^2$/d and 7.26mg/$m^2$/d, respectively. For the improvement of water quality in this area, not only pollutant loads of rivers and ditches but also benthic flux from sediment should be reduced within the limits of the environmental capacity.

The improvement of sewerage fee imposition system for efficient rainwater management (효율적 빗물관리를 위한 하수도 요금체계 개편 방안)

  • Park, Kyoo-Hong;Kang, Byong-Jun;Park, Joo-Yang;Park, Wan-Kyu;Kim, Sung-Tae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.5
    • /
    • pp.517-527
    • /
    • 2014
  • As sewer flooding frequents due to localized and concentrated stormwater and increased non-permeable surface area after urbanization, building cities with sound water recycle and accordingly efficient management of rainwater is demanded. To do this, the existing sewage (including rainwater) fee imposition system should be philosophically evaluated. This study presents problematic issues of the existing domestic sewage fee imposition system considering the principle of sharing costs on the service of sewage and rainwater collection and treatment. Four methods to improve the existing sewage fee imposition system are suggested: 1) imposing stormwater fee according to Polluter Pays Principle, 2) clarification of the share of public sector, 3) reducing or exempting the sewerage fee for inhabitants reducing urban runoff by constructing their own rainwater management facilities, 4) imposing charge for discharging rainwater to sewers due to new development action. Short, mid, or long term planning for rainwater management is recommended considering the situation of each municipality.

A Study on the Improvement of Effluent Treatment from Small Scale Agro-food Processes (소규모 농산가공시설 배출수 처리시설 개선방안)

  • Kim, Youngjin;Jeon, Jonggil;Kim, Minyoung;Choi, Yonghun
    • Journal of Agricultural Extension & Community Development
    • /
    • v.23 no.4
    • /
    • pp.361-374
    • /
    • 2016
  • This study examined the regulation status on wastewater treatment in agro-food processing and a case study on effluent treatment m ethods was carried out to evaluate any change after the mitigation of regulation. First, in order to clarify the area of investigation, the definition of small-scale agro-processing facilities was reviewed through literature survey and local government ordinance. The current law were separately analyzed into four areas; effluent treatment facilities, development of agro-processing industries, land use and food processes equipment. The exclusion clauses on wastewater discharging facility in the enforcement regulation were defined in detail, which can be served in practice. Site survey, after the questionnaire survey of the person in charge of the local unit, was carried out. As the result, this survey confirmed the positive effects of the deregulation on promoting sewer system service in rural areas, introducing the new processing construction and so on. In addition, it was found that some matters to be considered to determine whether to introduce wastewater treatment plan for public food processing facilities.

Analysis of Connected Operations of PV Source and Li Energy Storage Equipment to Power System (태양광 전원과 리튬 에너지 저장장치의 연계운전시 특성 해석)

  • Kim, Deok Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.106-112
    • /
    • 2014
  • This paper presents the analysis of connected operation of photo voltaic source and Li energy storage system. The micro-grid has been installed and operated for several years at the campus of USF and has been a role of test bed. Photo voltaic source has been strongly influenced by the location, weather and climate of a installed area and Li battery is connected directly to the photo voltaic source to compensate for the limitations. The Li battery is operated to supply power output to the grid by the charging or discharging mode based on the average power output of the PV source which is calculated from monitored data for several years. The load of the PV and Li battery system is operated as a severe loading condition and the operating characteristics of PV source and Li battery are analyzed in detail. In connected operations of PV and Li battery to power system, the PV and Li battery is operated to supply constant power during only day time or peak time to increase load shedding ratio and efficient usage of generation sources in power system.