• Title/Summary/Keyword: Discharges

Search Result 1,134, Processing Time 0.02 seconds

Estimation of the Reach-average Velocity of Mountain Streams Using Dye Tracing (염료추적자법을 이용한 산지하천의 구간 평균 유속 추정)

  • Tae-Hyun Kim;Jeman Lee;Chulwon Lee;Sangjun Im
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.374-381
    • /
    • 2023
  • The travel time of flash floods along mountain streams is mainly governed by reach-average velocity, rather than by the point velocity of the locations of interest. Reach-average velocity is influenced by various factors such as stream geometry, streambed materials, and the hydraulic roughness of streams. In this study, the reach-average velocity in mountain streams was measured for storm periods using rhodamine dye tracing. The point cloud data obtained from a LiDAR survey was used to extract the average hydraulic roughness height, such as Ra, Rmax, and Rz. The size distribution of the streambed materials (D50, D84) was also considered in the estimation of the roughness height. The field experiments revealed that the reach-average velocities had a significant relationship with flow discharges (v = 0.5499Q0.6165 ), with an R2 value of 0.77. The root mean square error in the roughness height of the Ra-based estimation (0.45) was lower than those of the other estimations (0.47-1.04). Among the parameters for roughness height estimation, the Ra -based roughness height was the most reliable and suitable for developing the reach-average velocity equation for estimating the travel time of flood waves in mountain streams.

Effect of trauma center operation on emergency care and clinical outcomes in patients with traumatic brain injury

  • Han Kyeol Kim;Yoon Suk Lee;Woo Jin Jung;Yong Sung Cha;Kyoung-Chul Cha;Hyun Kim;Kang Hyun Lee;Sung Oh Hwang;Oh Hyun Kim
    • Journal of Trauma and Injury
    • /
    • v.36 no.1
    • /
    • pp.22-31
    • /
    • 2023
  • Purpose: Traumatic brain injury (TBI) directly affects the survival of patients and can cause long-term sequelae. The purpose of our study was to investigate whether the operation of a trauma center in a single tertiary general hospital has improved emergency care and clinical outcomes for patients with TBI. Methods: The participants of this study were all TBI patients, patients with isolated TBI, and patients with TBI who underwent surgery within 24 hours, who visited our level 1 trauma center from March 1, 2012 to February 28, 2020. Patients were divided into two groups: patients who visited before and after the operation of the trauma center. A comparative analysis was conducted. Differences in detailed emergency care time, hospital stay, and clinical outcomes were investigated in this study. Results: On comparing the entire TBI patient population via dividing them into the aforementioned two groups, the following results were found in the group of patients who visited the hospital after the operation of the trauma center: an increased number of patients with a good functional prognosis (P<0.001 and P=0.002, respectively), an increased number of surviving discharges (P<0.001 and P<0.001, respectively), and a reduction in overall emergency care time (P<0.05, for all item values). However, no significant differences existed in the length of intensive care unit stay, ventilator days, and total length of stay for TBI patients who visited the hospital before and after the operation of the trauma center. Conclusions: The findings confirmed that overall TBI patients and patients with isolated brain injury had improved treatment results and emergency care through the operation of a trauma center in a tertiary general hospital.

Development of river discharge estimation scheme using Monte Carlo simulation and 1D numerical analysis model (Monte Carlo 모의 및 수치해석 모형을 활용한 하천 유량 추정기법의 개발)

  • Kang, Hansol;An, Hyunuk;Kim, Yeonsu;Hur, Youngteck;Noh, Joonwoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.279-289
    • /
    • 2022
  • Since the frequency of heavy rainfall is increasing due to climate change, water levels in the river exceed past historical records. The rating-curve is to convert water level into flow dicscharge from the regression analysis of the water level and corresponding flow discharges. However, the rating-curve involves many uncertainties because of the limited data especially when observed water level exceed past historical water levels. In order to compensate for insufficient data and increase the accuracy of flow discharge data, this study estimates the flow discharge in the river computed mathematically using Monte Carlo simulation based on a 1D hydrodynamic numerical model. Based on the existing rating curve, a random combination of coefficients constituting the rating-curve creates a number of virtual rating curve. From the computed results of the hydrodynamic model, it is possible to estimate flow discharge which reproduces best fit to the observed water level. Based on the statistical evaluation of these samples, a method for mathematically estimating the water level and flow discharge of all cross sections is porposed. The proposed methodology is applied to the junction of Yochoen Stream in the Seomjin River. As a result, it is confirmed that the water level reproducibility was greatly improved. Also, the water level and flow discharge can be calculated mathematically when the proposed method is applied.

Study of the Mitigation of Algae in Lake Uiam according to the Operation of the Chuncheon Dam and the Soyang Dam (춘천댐 및 소양강댐 운영에 따른 의암호 조류 저감 연구)

  • Lee, Dong Yeol;Baek, Kyong Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.171-179
    • /
    • 2022
  • In this study, the characteristics of algae mitigation according to dam operation were quantitatively analyzed for Uiam Lake, where the Chuncheon Dam is located upstream of the main stream, Uiam Dam is located downstream, and Soyang Dam is located in the tributary stream. Nine dam operation scenarios were applied to the event of the summer of 2018 (at that time an algae alert occurred) using the EFDC model, which is capable of calculating three-dimensional hydrodynamics and water quality levels such as those associated with chlorophyll-a. The dam operation scenarios were set to generate a flushing effect via discharges in the form of pulse waves from the upstream dams and by lowering the water level at the downstream dam. At Uiam Lake, the flushing effect was different depending on the operation of the dam, and the amount of algae reduction at each point was different owing to topographic characteristics and the different base water temperatures from BukHan River and Soyang River. With regard to a point located on the left bank, it was predicted that the peak level of chlorophyll-a would be reduced by approximately 50 % or more upon pulsed discharge at 50 m3/s for three days at Soyang Dam. However, for the right bank, the amount of discharge from Soyang Dam had little effect on algae mitigation. Therefore, an appropriate dam operation could be effective for algae mitigation at specific points in the water body where large dams exist upstream and downstream, such as at Uiam Lake, in an emergency situation in which algal blooms rapidly.

Increase of Spillway Discharge by Labyrinth Weir (래버린스위어에 의한 여수로 배제유량 증대)

  • Seo, Il Won;Song, Chang Geun;Park, Se Hoon;Kim, Dong Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.11-20
    • /
    • 2008
  • The spillway type of small and midsize dams in Korea is almost overflow weir. To examine flood control capacity of overflow spillway, FLOW-3D was applied to Daesuho dam and analysis was focused on the discharge of dam spillway by changing weir shape. Overflow phases and discharges of linear labyrinth weir and curved labyrinth weir were compared with those of existing linear ogee weir. Hydraulic model experiment was performed to verify numerical result. Verification results showed that overflow behaviors and flow characteristics in the side channel by hydraulic model experiment and numerical simulation are well matched, and water surface elevation at side wall coincides with each other. When the reservoir elevation was increased up to design flood level, in case of the linear ogee weir the flow over the crest ran through smoothly in the side channel, whereas in cases of linear labyrinth weir and curved labyrinth weirs, the flow discharge was increased by 40 cms, and the flow over the weir crest, rotating counter-clockwise, was submerged in the side channel. The results of the water level-discharge curve revealed that labyrinth weir can increase discharge by 71% compared to the discharge of linear ogee weir at low reservoir elevation since it can have longer effective length. But as water surface elevation rises, the slope of water level-discharge curve of labyrinth weir becomes milder by submergence and nappe interference in the side channel.

Evaluation of Levee Reliability by Applying Monte Carlo Simulation (Monte Carlo 기법에 의한 하천제방의 안정성 평가)

  • Jeon, Min Woo;Kim, Ji Sung;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.501-509
    • /
    • 2006
  • The safety of levee that depends on the river flood elevation has been regarded as very important keys to build up various flood prevention systems. However, deterministic methods for computation of water surface profile cannot reflect the effect of possible inaccuracies in the input parameters. The purpose of this study is to develop a methodology of uncertainty computation of design flood level based on steady flow analysis and Monte Carlo simulation. This study addresses the uncertainty of water surface elevation by Manning's coefficients, design discharges, river cross sections and boundary condition. Monte Carlo simulation with the variations of these parameters is performed to quantify the variations of water surface elevations in a river. The proposed model has been applied to the Kumho-river. The reliability analysis was performed within 38.5 km (95 sections) reach considered the variations of the above-mentioned parameters. Overtopping risks were evaluated by comparing the elevations of the flood condition with the those of the levees. The results show that there is a necessity which will raise the levee elevation between 1 cm and 56 cm at 7 sections. The model can be used for preparing flood risk maps, flood forecasting systems and establishing flood disaster mitigation plans as well as complement of conventional levee design.

Measurement of the Equivalent Resistance Coefficient for Multi-piers in Open Channel (개수로 다열기둥에 대한 상당저항계수의 측정)

  • Kwon, Kab Keun;Choi, Junwoo;Yoon, Sung Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.635-642
    • /
    • 2008
  • The influence of unsubmerged resistance bodies in a channel turbulence flow on energy loss was investigated by hydraulic experiments. Square-shaped multi-piers were used for unsubmerged structure or rigid vegetation in an open channel. In experimental channel flows multi-piers were arranged in double or single row along the channel direction, and mean-concept uniform elevations were attained and measured with a set of discharges and channel slopes. Applying the experimental results to the Manning equation, the equivalent resistance coefficient n, which implicates flow resistance and energy loss due to bottom friction as well as drag, was evaluated with varying the interval of piers and the uniform water depth. And the experimentally evaluated n values were compared with the semi-theoretical formula of the equivalent resistance coefficient derived from momentum analysis including a drag interaction coefficient. From the comparisons it was found that the interaction effect of piers on flow resistance was significant for the overall energy losses in a channel flow. The n values decrease when the interval of piers in flow-direction is less than about 2.2 times of the pier width. And it was also found that the n values increase with the 2/3 power of water depth in the theoretical formula, since the drag interaction coefficient was found to be mostly dependent on the interval of piers.

Analysis of Channel Changes in Mountain Streams Due to Typhoon Hinnamnor Flood - A Case Study on Shingwangcheon and Naengcheon Streams in Pohang - (태풍 힌남노 홍수로 인한 산지 중소하천의 하도 변화 분석 - 포항 신광천 및 냉천을 사례로 -)

  • Chanjoo Lee;Seong Gi An;Eun-Kyung Jang
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.97-106
    • /
    • 2023
  • This study analyzed morphological changes in the Singwangcheon and Naengcheon streams in Pohang caused by flooding due to Typhoon Hinnamnor. Analysis of the changes in river channel area from the past to recent times using aerial photos and drone-taken images showed that the river width had gradually decreased since the 1960s. However, after the flood, the river width increased again. Changes in the river cross-section before and after the flood show that a large amount of coarse sediment was deposited inside the river bend while the outer bank was eroded. The water levels calculated using HEC-RAS for the pre-flood cross-section based on the flood frequency discharges and estimated discharge from Oer Reservoir were significantly lower than the observed water level, which means that the cross-sectional change was not considered. The results of this study suggest that it is necessary to consider cross-sectional changes due to sediment transport when estimating the flood level of small and medium-sized mountain streams, and it is needed to investigate the geomorphic changes after floods.

Changes in Mesozooplankton Community Around the Rainy Season in Asan Bay, Korea (아산만 해역에서 장마기 전후 중형동물플랑크톤 군집의 변화)

  • Lee, Doo-Byoul;Park, Chul;Yang, Sung-Ryull;Shin, Yong-Sik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.337-348
    • /
    • 2007
  • Characteristics in distributions of T, S, nutrients, chlorophyll ${\alpha}$ concentrations and meso-zooplankton abundances and the relations among these parameters were investigated with the data collected in Asan Bay around the rainy season from May 24 till August 25, 2006 at about 10 days interval. Freshwater input during the rainy season clearly affected the distributions of zooplankton and phytoplankton (chlorophyll ${\alpha}$). Freshwater discharge resulted in high nutrients decreased zooplankton abundances. On the contrary, chlorophyll ${\alpha}$ concentrations increased at the end of the rainy season. It seemed that the increase of chlorophyll ${\alpha}$ concentrations was the result of the decreased zooplankton and enriched nutrients caused by freshwater discharges. Seawater temperatures were certainly the reason for the zooplankton succession. However, overall abundance of zooplankton and abundances of some zooplankton such as Noctiluca scintillans, Acartia pacifica, and Sagitta crassa seemed to be influenced by lowered salinity caused by heavy rain rather than seawater temperatures.

Analysis of Parameter Optimization Reflecting the Characteristics of Runoff in Small Mountain Catchment (소규모 산지 유역의 유출특성을 반영한 매개변수 최적화 분석)

  • Joungsung Lim;Hojin Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.9
    • /
    • pp.5-14
    • /
    • 2024
  • In Korea, torrential rain frequency and intensity have surged over the past five years (2019-2023), breaking rainfall records. Due to insufficient observation facilities for rainfall and runoff data in small mountainous catchments, preparing for unexpected floods is challenging. This study examines the Bidogyo catchment in Goesan-gun, Chungcheongbuk-do, comparing design flood discharge calculated with optimized parameters versus standard guidelines. Using HEC-HMS and Q-GIS for model construction, five rainfall events were analyzed with data from the National Water Resources Management Information System. The time of concentration (Tc) and storage constant (K) were calculated using the Seokyeongdae formula and model optimization. Results showed that optimized parameters produced higher objective function values for flood events. The design flood discharge varied by -10.7% to 17.3% from the standard guidelines when using optimized parameters. Moreover, optimized parameters yielded flood discharges closer to observed values, highlighting limitations of the Seokyeongdae formula for all catchments. Further research aims to develop suitable parameter estimation methods for small mountainous catchments in Korea.