• Title/Summary/Keyword: Discharge velocity

Search Result 604, Processing Time 0.032 seconds

CFD Analysis on Discharge Passage Flow of Hydrogen Reciprocating Compressor (왕복동식 수소압축기의 토출구 유동에 관한 CFD해석)

  • Lee, Gyeong-Hwan;Rahman, Mohammad-Shiddiqur;Chung, Han-Shik;Jung, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.561-566
    • /
    • 2008
  • The reciprocating compressor is widely used in the industry field, because it has simple principle and high efficiency. In this work, in order to improve design of discharge passage line in hydrogen compression system Numerical analysis was conducted. General information about an internal gas flow is presented by numerical analysis approach. Relating with hydrogen compressing system, which have an important role in hydrogen energy utilization, this should be a useful tool to observe the flow quickly and clearly. Flow characteristic analysis, including velocity, pressure and turbulence kinetic energy distribution of hydrogen gas going out from the cylinder to discharge-path line are presented in this paper. Discharge-passage model is designed based on real model of hydrogen compressor. Pressure boundary conditions are applied considering the real condition of operating system. The result shows velocity, pressure and turbulent kinetic energy are not distributed uniformly along the passage of the Hydrogen system. Path line or particles tracks help to demonstrate flow characteristics inside the passage. The existence of vortices and flow direction can be precisely predicted. Based on this result, the design improvement might be done.

  • PDF

HYDRAULIC ANALYSIS OF OXYGEN TRANSFER THROUGH AIR ENTRAINMENT IN RIPARIAN RIFFLES

  • Kim, Jin-Hong
    • Water Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.127-139
    • /
    • 2003
  • This paper presents the hydraulic analysis of the oxygen transfer through the air entrainment and the relationships between the efficiency of the oxygen transfer and the hydraulic parameters in the riparian riffles. Field survey on the pool-riffle formation of the river reach and the measurements of the oxygen transfer in the riffles were performed. Air entrainment occurred more frequently in the edged gravels rather than in the round and edgeless ones, and it was formed mainly from behind the trailing edges of the gravels. Oxygen transfer was found to be proportional to the flow velocity, the flow discharge, and the Froude number, but to be not closely related to the particle diameter. Average value of oxygen transfer in the riffles of study area was about 0.085, which shows good efficiency compared with results of smooth chute. Variation of the water level, which increases in proportion to the flow velocity and the flow discharge, seems to make the air entrainment more active, but has not been verified quantitatively. Relationships between the air entrainment and the variation of the water level must be considered in the further study.

  • PDF

Effect of Radius of Curvature of a Corona Needle on Ionic Wind Generation (방전 침전극의 곡률반경이 이온풍 발생에 미치는 영향)

  • Hwang, Deok-Hyun;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.604-608
    • /
    • 2010
  • An electric fan for cooling high density electronic devices is limited and operated in very low efficiency. The corona discharge is utilized as the driving mechanism for an ionic gas pump, which allows for air flow control and generation with low noise and no moving parts. These ideal characteristics of ionic pump give rise to variety applications. However, all of these applications would benefit from maximizing the flow velocities and yields of the ionic pump. In this study, a needle-mesh type ionic pump has been investigated by focusing on the radius of curvature of corona needle points elevating the ionic wind velocity and efficiency. It is found that the radius of curvature of the corona discharge needle point influences significantly to produce the ionic wind and efficiency. As a result, an elevated ionic wind velocity and increased ionic wind generation yield can be obtained by optimized the radius of curvature of the corona needle electrode.

Effective Ionic Wind Generation of a Surface Discharge Type Ionic Air Pump (연면 방전형 이온풍 발생장치의 고효율 풍속발생)

  • Jung, Jae-Seung;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1594-1598
    • /
    • 2008
  • The ionic air pump can be used towards the thermal management of micro-electronic devices, since the size of pump can be reduced to micrometer orders. In addition, an air pump allows air flow control and generation with low noise and no moving parts. These ideal characteristics of the pump give rise to variety applications. However, all of these applications would benefit from maximizing the flow velocities of the pumps. In this study a surface discharge type air pump, with a third electrode, has been investigated by focusing on elevating the wind velocity and efficiency. As a result, the enhanced ionic wind velocity could be obtained with the third electrode of the proposed air pump.

A Study for Optimization the Ventilation Performance of the Computer Room (전산실의 환기성능 최적화를 위한 연구)

  • Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.2
    • /
    • pp.57-62
    • /
    • 2015
  • The objective of the present study is to identify the ventilation problems and to suggest the optimal ventilation system to save energy and to improve IAQ in the computer rooms, which annually performs the cooling operation by the server with the highly thermal load. Numerical results on the temperature and local mean age are presented along with some of the discharge velocities. Results show many interesting aspects of airflow patterns affecting the ventilation performances, according to the discharge velocity of the supply diffuser installed in the bottom surfaces between the servers. As the results, 2.5 m/s of the optimal discharge velocity is needed in order to improve the ventilation performance.

Form Drag Factor of Contracted Flow (축소단면흐름 형상항력계수)

  • 권순국;유동훈
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.82-89
    • /
    • 1995
  • The efforts of formulation have been reviewed and the results of existing laboratory experiments are investigated in order to describe the contracted flow which occurs at the final closure of sea dike construction. The regional characteristics of contracted flow is analyzed by checking the drawdown curve, and Chezy's mean velocity equation is employed to estimate the discharge rate at the closure. Weir-type discharge equations are reviewed, which are derived from Bernoulli equation, and the problems of the equations are discussed. Chezy's mean velocity equation is considered to be widely and generally applicable, and the empirical factor introduced in Chezy's equation is named 'form drag factor' since it is primarily dependent on the form drag caused by the contraction of discharge area. Laboratory experiments were conducted mainly in order to investigate the variation of form drag factor against various parameters, and an empirical equation is developed for the estimation of form drag factor.

  • PDF

FLUID-GRANULE MIXED FLOIW DOWNSTREAM OF SCOUR HOLE AT OUTLET OF HYDRAULIC STRUCTURE

  • Kim, Jin-Hong;Shim, Myung-Pil;Kim, Kyung-Sub
    • Water Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.155-162
    • /
    • 2002
  • This study presents the theoretical approach for volume concentration, velocity profile, and granular discharge on the fluid-granule mixed flow downstream of the scour hole at the outlet of the hydraulic structure. Concept of dilatant model was applied for the stress-strain relationships of fluid-granule mixed flow since the flow downstream of the scour hole corresponds to debris flow, where momentum transfers through particle collisions. Mathematical formulations were derived using momentum equation and stress-strain relation of the fluid-granule mixture. Velocity profile under the assumption of uniform concentration over flowing layer showed the downward convex type. Deposition angle of downstream hump was found to be a function of an upstream slope angle, a dynamic friction angle and a volume concentration irrespective of flow itself, Granular discharge and the overflow depth were obtained with given values of inflow rates. Experimental results showed relatively good agreements with theoretical ones.

  • PDF

Analysis of Characteristics on the Static Electricity by Streaming Electrification (유동대전에 의한 정전기 특성 분석)

  • Kim, Gil-Tae;Lee, Jae-Keun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.42-46
    • /
    • 2005
  • The static electricity by thinner flow and discharge energy is investigated experimentally for the purpose of preventing the electrostatic discharge and damage. Test system for evaluating streaming electrification consists of a teflon pipe, a reservoir tank a pump, flowmeters and an electrometer. When dielectric liquid flows through a pipe from one vessel to another, the potential difference generated in the collecting vessel is due to the accumulation of charges. These charges result from the convection of a part of the electrical double layer existing in the tube at the contact between the liquid and the inner wall. When the fluid velocity increases, the electric current increases proportionally. The charging current and accumulated charges by streaming electrification at the thinner velocity of 40cm/s are measured a range of 5 nA and $0.27{\mu}C$ respectively. This amount of static discharge energy generated by streaming electrification is enough to ignite flammable solvent. Therefore surface electric potential should decrease by using electrostatic shielding and ground.

Experimental Study on Effect of Electrode Material and Thickness in a Dielectric Barrier Discharge Plasma Actuator Performance (전극 재료 및 두께가 DBD 플라즈마 액추에이터의 성능에 미치는 영향에 대한 실험적 연구)

  • Lee, Seung-Yeob;Shin, You-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.46-50
    • /
    • 2012
  • Plasma actuator makes parallel flow on the wall surface by the interaction between plasma and neutral air particles. Dielectric barrier discharge (DBD) plasma actuator is widely studied as one type of plasma actuators, which consists of one electrode exposed to the environmental gas and the other encapsulated by a dielectric material. This paper is experimentally focused on the performance of DBD plasma actuator mounted on a flat plate, which depends on kinds of the electrode materials, their thicknesses and the supplied voltage including its frequency. We measured the velocity magnitudes of the induced flow by a stagnation probe as a performance parameter of the plasma actuators. The velocity profiles of the flow induced by the plasma actuators are similar in all measurement cases. The magnitude of the induced velocity is strongly influenced by the thickness of the electrodes and the frequency of the input voltage. The performance of DBD plasma actuators is related to the electric properties of the electrode materials such as the ionization energy and the electrical resistivity.

Application of Three-Dimensional Model to Evaluate Stream Discharge Capacity due to Vegetation (식생분포에 따른 하도의 통수능 검토를 위한 3차원 모형의 적용)

  • Noh, Joon Woo;Lee, Jin Young;Ahn, Ki Hong
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.1
    • /
    • pp.37-48
    • /
    • 2011
  • Recently, the social and environmental functions of nature river are important due to the increase of expectation for river restoration. So it should be considered the effect of vegetation affecting the conveyance capacity and hydraulic resistance. However, it has not yet proposed a objective standard and modeling method to estimate the effect of conveyance capacity according to vegetaion distribution in the watercourse such as water level or velocity. Therefore, this study simulates the variations of water level and velocity using 3-dimensional hydrodynamic model, EFDC, to consider a conveyance capacity in downstream of the Soyang Reservoir. The simulation results were validated using statistical index such as F-test and T-test. As results, the water level rises about 0.01 to 0.47m and velocity difference are about -0.95m/s to 0.23m/s.