• Title/Summary/Keyword: Discharge rating curve

Search Result 92, Processing Time 0.03 seconds

A Stochastic Analysis of the Water Quality on the Basin of Soyang River with Discharge Variation (유량변동에 따른 소양강유역 수질의 통계학적 해석)

  • Choi, Han-Kyu;Baek, Kyung-Won;Choi, Yong-Mook;Choi, Jin-Woo
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.233-240
    • /
    • 2001
  • This research was conducted with the aim of efficiently managing large scale of rivers such like Songyang-river through predicting water quality change with analyzing the characteristics of the flowing in nutrients and pollutants. The main result will be used as basic data for effectively operating reservoirs through controling water quality and quantity. The relationship between quantity of flow and water quality was analyzed and pollution loading into the basin was estimated. Three areas of Soyang-river upstream and one area of Suip-cheon in Yanggu-gun were selected as research sites. Flow and water quality were measured simultaneously. The relation between quantity of discharge and pollution concentration and between quantity of discharge and pollution loading were analyzed by statistical method, respectively. We provided a rating curve through measuring quantity of discharge(collecting quantity of discharge) and pollutograph and pollution loading curve through water quality data. Also, we analyzed the correlation between quantity of discharge per unit area and pollution loading per unit area in each basin. As resurt of this research, Buk-cheon spot revealed an excellent first grade water quality for the items including $BOD_5$, DO, and SS. The correlation coefficient between Buk-cheon spot's quantity of discharge and pollution loading was 0.896~0.996, showing the validity of analysis applying correlation curve formula of quantity of discharge and pollution loading in the same spot. Also, pollution loading per unit area of the items including $BOD_5$, COD, DO, SS, T-N, T-P increased as the area of basins get increased following the sequence of Buk-cheon, Suip-cheon, Naelin-cheon spots.

  • PDF

Development of Rating Curve for High Water Level in an Urban Stream using Monte Carlo Simulation (Monte Carlo Simulation을 이용한 도시하천의 고수위 Rating Curve 개발)

  • Kim, Jong-Suk;Yoon, Sun-Kwon;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1433-1446
    • /
    • 2013
  • In this study, we proposed a methodology to develop Rating Curves for high water level using rainfall generation by the Monte Carlo Simulation (MCS) technique, optimized rainfall-runoff model, and flood routing model in an urban stream. The developed stage discharge Rating Curve based on observed data was contained flow measurement errors and uncertainties. The standard error ($S_e$) for observations was 0.056, and the random uncertainty ($2S_{mr}$) was analyzed by ${\pm}1.43%$ on average, and up to ${\pm}4.27%$. Moreover, it was found that the Rating Curve extensions by way of logarithmic and Stevens methods were overestimated to compare with the urban basin scale. Finally, we confirmed that the high water level extension by random generation of hydrological data using MCS can be reduced uncertainty of the high water level, and it will consider as a more reliable approach for high water level extension. In the near future, this results can be applied to real-time flood alert system for urban streams through construction of the high water level extension system using MCS procedures.

Transitions between Uncontrolled Submerged and Uncontrolled Free in Low-Head Ogee Spillway

  • Hong, Seung Ho;Hong, Da Hee;Song, Yang Heon;Lee, Jeong Myeong;Jegal, Jin A
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.155-155
    • /
    • 2022
  • Low head, ogee spillways is popularly used to defense against floods as well as to provide water for irrigation. Spillway is also used to assess compliance with water quality regulations by controlling amount of discharge to the downstream of a channel. For the purpose of water resource management and/or environmental aspects as explained above, the flow discharge through spillways need to be correctly rated as a function of geometry and hydraulic variables. Typically, four flow conditions are encountered during the operation of spillway: (a) uncontrolled free flow (UF); (b) uncontrolled submerged flow (US); controlled free flow (CF); and controlled submerged flow (CS), and each condition has a unique rating equation. However, one of the tricky part of the spillway operation is finding correct flow type over the spillway because structures can operate under both submerged and free flow conditions, and the types are continuously changing over time depending on the amount of discharge, head water and tail water elevation. Quite obviously, if the wrong rating curve relationship is applied because of misjudgment of the flow type due to a transition, a serious error can occur. Thus, an hydraulic model study of one of spillway structure located in South Florida was conducted for the purpose of developing transition relationships. In this presentation, US to UF transition is highlighted.

  • PDF

Evaluation of the Irrigation Water Supply of Agricultural Reservoir Based on Measurement Information from Irrigation Canal (수로부 계측정보 기반 농업용 저수지의 관개용수 공급량 평가)

  • Lee, Jaenam;Noh, Jaekyoung;Kang, Munsung;Shin, Hyungjin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.63-72
    • /
    • 2020
  • With the implementation of integrated water management policies, the need for information sharing with respect to agricultural water use has increased, necessitating the quantification of irrigation water supply using monitoring data. This study aims to estimate the irrigation water supply amount based on the relationship between the water level and irrigation canal discharge, and evaluate the reliability of monitoring data for irrigation water supply in terms of hydrology. We conducted a flow survey in a canal and reviewed the applicability of the rating curve based on the exponential and parabolic curves. We evaluated the reliability of the monitoring data using a reservoir water balance analysis and compared the calculated results of the supply quantity in terms of the reservoir water reduction rate. We secured 26 readings of measurement data by varying the water levels within 80% of the canal height through water level control. The exponential rating curve in the irrigation canal was found to be more suitable than the parabolic curve. The irrigation water supplied was less than 9.3-28% of the net irrigation water from 2017 to 2019. Analysis of the reservoir water balance by applying the irrigation water monitoring data revealed that the estimation of the irrigation water supply was reliable. The results of this study are expected to be used in establishing an evaluation process for quantifying the irrigation water supply by using measurement information from irrigation canals in agricultural reservoirs.

An Application of a New Two-Way Regression Model for Rating Curves (수위-유량관계식에 새로운 양방향 회귀모형의 적용)

  • Lee, Chang-Hae
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.1
    • /
    • pp.17-25
    • /
    • 2008
  • Whether rating curves are used in practice or new ones are derived, the characteristics of regression analysis are often neglected. For example, a discharge rating curve, which is established from a regression of observed water levels (H) on observed flowrates(Q), is sometimes used for estimating a design water level corresponding to a simulated design flood runoff. However, if independent and dependent variables are changed with each other, the regression equation is changed in existing regression analysis, which is derived from vertical errors between observed data and regression line. Thus, regression equations should not be applied inversely. To avoid this problem, A new two-way variable least-squares regression analysis is proposed. The new method was applied to the rating curves of five water level stations on main stream of Nakdong River. The three kinds of regression models, which are respectively regression of Q versus H (model 1), H versus Q (model 2) and two-way (model 3), showed that the new method can reduce inadvertent mistakes when applied in practice.

Storage Estimation of Irrigation Reservoir by Water Balance Analysis (물수지 분석을 통한 관개용 저수지의 저수율 추정)

  • Choi, Jin-Kyu;Son, Jae-Gwon;Koo, Ja-Woong;Kim, Young-Ju
    • Journal of Korean Society of Rural Planning
    • /
    • v.9 no.4 s.21
    • /
    • pp.1-7
    • /
    • 2003
  • This study was conducted to seek the effective water management method of the irrigation reservoirs. Joongpyong reservoir was selected for the hydrologic monitoring, and investigated from May in 1999 to December in 2001. The water level and amount of outlet discharge were measured, the stage discharge equation as a rating curve was induced, and which were compared to the irrigation water requirements calculated by a daily simulation model. The water balance of Joongpyong reservoir was analyzed, mainly on the reservoir storage ratio during irrigation period. Comparing the observed storage and simulation data, the results of the simulation were well agreed with the measured data.

Pollutant Flux Releases During Summer Monsoon Period based on Hydrological Modeling in Two Forested Watersheds, Soyang Lake

  • Kang, S.H.
    • Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • In this study, specific pollutant releases during the Asian monsoon season were estimated and the information was applied to the non-point pollutant sources management from two forested watersheds of the Soyang Lake. The two watersheds are part of the 2,703 km2 Soyang Lake watershed in the northern region of the Han River. The outlets of the two watersheds were respectively analyzed for continuous water quality concentration and for discharge during various single rainfall events. Statistical power function methods are utilized to compare stream discharge and pollutant flux release during the study period. Based on the monitoring data during the study period, the specific load flux method using simulated discharge was conducted and validated in the two watersheds. The model predictions corresponded well with the measured and calculated pollutant releases. The modeling approach taken in this study was found to be applicable for the two forested watersheds.

Estimation for Probability Flood Discharge in Urban Rivers (도심통과 하천에서의 확률홍수량 산정)

  • Yun, seong-jun;Choi, jae-hong;Kwon, gi-beom;Seo, jae-youl;Lee, jong-seok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.281-284
    • /
    • 2008
  • Estimating flood discharge is important because a very large scale of damage on people's lives and wealth is occurred by downpour for the unusual weather change recently. Accordingly, this study derive rating-curve by using the estimated probable flood discharge although frequency analysis for Gam-stream.

  • PDF

Water Quality Characteristics Evaluation by Flow Conditions Using Load Duration Curve - in Youngbon A Watershed - (부하지속곡선을 이용한 유량 조건별 수질특성 평가 - 영본A 유역을 대상으로 -)

  • Park, Jinhwan;Kim, Kapsoon;Jung, Jaewoon;Hwang, Kyungsup;Moon, Myungjin;Ham, Sangin;Lim, Byungjin
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.4
    • /
    • pp.319-327
    • /
    • 2013
  • This study was conducted to identify runoff characteristics of pollutants using flow duration curve(FDC) and load duration curve(LDC) in Youngbon A watershed during 2009~2011. A flow rate and pollutant load in the study watershed were estimated by equation of stage-discharge and discharge-loads rating curve. From these methods, BOD, T-N, and T-P have evaluated whether water quality standards would have attained. Results showed that BOD loads of about 50% plotted above the LDC, while T-N and T-P loads of about 50% plotted below the curve. It means that BOD of about 50% have exceeded the water quality criteria, while T-N and T-P of about 50% have complied with the water quality standards. Meanwhile, BOD, TN and T-P loads plotted above the LDC of low flows, implying that they were more affected by point pollution sources than nonpoint pollution sources in the study watershed.

The estimation of river discharge by using the mean velocity equation in a unsteady condition (평균유속공식을 이용한 부정류 하천유량 산정)

  • Choo, Tai Ho;Chae, Soo Kwon;Yoon, Hyeon Cheol;Yun, Gwan Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6558-6564
    • /
    • 2013
  • As the average indicator for amount of water flowing in any cross section of a river, the mean discharge has been reported to be a very important factor for examining water circle constructions in a river basin, the design and construction of a hydraulic structure, and water front area use and management. The stage-discharge curve based on discharge and stage data measured in a normal season were basically derived. Using this derivation, the necessary discharge data was obtained. The values produced in this manner corresponded to the measured data in a uniform flow state well, but showed limited accuracy in a flood season (unsteady flow). In the present paper, the mean velocity in unsteady flow conditions, which exhibited loop form properties, was estimated using the new mean velocity formula derived from Chiu's 2-D velocity. The results of RMSE and Polar graph analyses showed that the proposed equation exhibited approximately nineteen times the accuracy compared to the Manning and Chezy equations.