• Title/Summary/Keyword: Discharge burnup

Search Result 23, Processing Time 0.028 seconds

Void Reactivity of DUPIC Fuel Bundle

  • Hari P. Gupta;Park, Hangbok;Bo W. Rhee;Park, Hyungsoo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.52-57
    • /
    • 1996
  • The coolant void reactivity is positive for CANDU reactor loaded with DUPIC fuel which has more fissile content compared to natural uranium. A parametric study was done to reduce the void reactivity of the fuel bundle and loss in discharge burnup was estimated. It is observed that the burnable absorbers like gadolinium, boron, europium are not able to keep the reduction in void reactivity uniform throughout fuel burnup. Dysprosium and erbium can keep the void reactivity reduction uniform throughout. fuel burnup but toss in discharge burnup for erbium case is more compared to that of dysprosium case.

  • PDF

Spent fuel simulation during dry storage via enhancement of FRAPCON-4.0: Comparison between PWR and SMR and discharge burnup effect

  • Dahyeon Woo;Youho Lee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4499-4513
    • /
    • 2022
  • Spent fuel behavior of dry storage was simulated in a continuous state from steady-state operation by modifying FRAPCON-4.0 to incorporate spent fuel-specific fuel behavior models. Spent fuel behavior of a typical PWR was compared with that of NuScale Power Module (NPMTM). Current PWR discharge burnup (60 MWd/kgU) gives a sufficient margin to the hoop stress limit of 90 MPa. Most hydrogen precipitation occurs in the first 50 years of dry storage, thereby no extra phenomenological safety factor is identified for extended dry storage up to 100 years. Regulation for spent fuel management can be significantly alleviated for LWR-based SMRs. Hydride embrittlement safety criterion is irrelevant to NuScale spent fuels; they have sufficiently lower plenum pressure and hydrogen contents compared to those of PWRs. Cladding creep out during dry storage reduces the subchannel area with burnup. The most deformed cladding outer diameter after 100 years of dry storage is found to be 9.64 mm for discharge burnup of 70 MWd/kgU. It may deteriorate heat transfer of dry storage by increasing flow resistance and decreasing the view factor of radiative heat transfer. Self-regulated by decreasing rod internal pressure with opening gap, cladding creep out closely reaches the saturated point after ~50 years of dry storage.

A Method to Estimate the Burnup Using Initial Enrichment, Cooling Time, Total Neutron Source Intensity and Gamma Source Activities in Spent Fuels

  • Sohee Cha;Kwangheon Park;Mun-Oh Kim;Jae-Hun Ko;Jin-Hyun Sung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.303-313
    • /
    • 2023
  • Spent fuels (SFs) are stored in a storage pool after discharge from nuclear power plants. They can be transferred to for the further processes such as dry storage sites, processing plants, or disposal sites. One of important measures of SF is the burnup. Since the radioactivity of SF is strongly dependent on its burnup, the burnup of SF should be well estimated for the safe management, storage, and final disposal. Published papers about the methodology for the burnup estimation from the known activities of important radioactive sources are somewhat rare. In this study, we analyzed the dependency of the burnup on the important radiation source activities using ORIGEN-ARP, and suggested simple correlations that relate the burnup and the important source activities directly. A burnup estimation equation is suggested for PWR fuels relating burnup with total neutron source intensity (TNSI), initial enrichment, and cooling time. And three burnup estimation equations for major gamma sources, 137Cs, 134Cs, and 154Eu are also suggested.

iBEST: A PROGRAM FOR BURNUP HISTORY ESTIMATION OF SPENT FUELS BASED ON ORIGEN-S

  • KIM, DO-YEON;HONG, SER GI;AHN, GIL HOON
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.596-607
    • /
    • 2015
  • In this paper, we describe a computer program, iBEST (inverse Burnup ESTimator), that we developed to accurately estimate the burnup histories of spent nuclear fuels based on sample measurement data. The burnup history parameters include initial uranium enrichment, burnup, cooling time after discharge from reactor, and reactor type. The program uses algebraic equations derived using the simplified burnup chains of major actinides for initial estimations of burnup and uranium enrichment, and it uses the ORIGEN-S code to correct its initial estimations for improved accuracy. In addition, we newly developed a stable bisection method coupled with ORIGEN-S to correct burnup and enrichment values and implemented it in iBEST in order to fully take advantage of the new capabilities of ORIGEN-S for improving accuracy. The iBEST program was tested using several problems for verification and well-known realistic problems with measurement data from spent fuel samples from the Mihama-3 reactor for validation. The test results show that iBEST accurately estimates the burnup history parameters for the test problems and gives an acceptable level of accuracy for the realistic Mihama-3 problems.

An approach to minimize reactivity penalty of Gd2O3 burnable absorber at the early stage of fuel burnup in Pressurized Water Reactor

  • Nabila, Umme Mahbuba;Sahadath, Md. Hossain;Hossain, Md. Towhid;Reza, Farshid
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3516-3525
    • /
    • 2022
  • The high capture cross-section (𝜎c) of Gadolinium (Gd-155 and Gd-157) causes reactivity penalty and swing at the initial stage of fuel burnup in Pressurized Water Reactor (PWR). The present study is concerned with the feasibility of the combination of mixed burnable poison with both low and high 𝜎c as an approach to minimize these effects. Two considered reference designs are fuel assemblies with 24 IBA rods of Gd2O3 and Er2O3 respectively. Models comprise nuclear fuel with a homogeneous mixture of Er2O3, AmO2, SmO2, and HfO2 with Gd2O3 as well as the coating of PaO2 and ZrB2 on the Gd2O3 pellet's outer surface. The infinite multiplication factor was determined and reactivity was calculated considering 3% neutron leakage rate. All models except Er2O3 and SmO2 showed expected results namely higher values of these parameters than the reference design of Gd2O3 at the early burnup period. The highest value was found for the model of PaO2 and Gd2O3 followed by ZrB2 and HfO2. The cycle burnup, discharge burnup, and cycle length for three batch refueling were calculated using Linear Reactivity Model (LRM). The pin power distribution, energy-dependent neutron flux and Fuel Temperature Coefficient (FTC) were also studied. An optimization of model 1 was carried out to investigate effects of different isotopic compositions of Gd2O3 and absorber coating thickness.

A Criticality Analysis of the GBC-32 Dry Storage Cask with Hanbit Nuclear Power Plant Unit 3 Fuel Assemblies from the Viewpoint of Burnup Credit

  • Yun, Hyungju;Kim, Do-Yeon;Park, Kwangheon;Hong, Ser Gi
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.624-634
    • /
    • 2016
  • Nuclear criticality safety analyses (NCSAs) considering burnup credit were performed for the GBC-32 cask. The used nuclear fuel assemblies (UNFAs) discharged from Hanbit Nuclear Power Plant Unit 3 Cycle 6 were loaded into the cask. Their axial burnup distributions and average discharge burnups were evaluated using the DeCART and Multi-purpose Analyzer for Static and Transient Effects of Reactors (MASTER) codes, and NCSAs were performed using SCALE 6.1/STandardized Analysis of Reactivity for Burnup Credit using SCALE (STARBUCS) and Monte Carlo N-Particle transport code, version 6 (MCNP 6). The axial burnup distributions were determined for 20 UNFAs with various initial enrichments and burnups, which were applied to the criticality analysis for the cask system. The UNFAs for 20- and 30-year cooling times were assumed to be stored in the cask. The criticality analyses indicated that $k_{eff}$ values for UNFAs with nonuniform axial burnup distributions were larger than those with a uniform distribution, that is, the end effects were positive but much smaller than those with the reference distribution. The axial burnup distributions for 20 UNFAs had shapes that were more symmetrical with a less steep gradient in the upper region than the reference ones of the United States Department of Energy. These differences in the axial burnup distributions resulted in a significant reduction in end effects compared with the reference.

Review of Instant Release Fractions of Long-lived Radionuclides in CANDU and PWR Spent Nuclear Fuels Under the Geological Disposal Conditions

  • Choi, Heui Joo;Koo, Yang-Hyun;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.231-241
    • /
    • 2022
  • Several countries, including Korea, are considering the direct disposal of spent nuclear fuels. The radiological safety assessment results published after a geological repository closure indicate that the instant release is the main radiation source rather than the congruent release. Three Safety Case reports recently published were reviewed and the IRF values of seven long-lived radionuclides, including relevant experimental results, were compared. According to the literature review, the IRF values of both the CANDU and low burnup PWR spent fuel have been experimentally measured and used reasonably. In particular, the IRF values of volatile long-lived nuclides, such as 129I and 135Cs, were estimated from the FGR value. Because experimental leaching data regarding high burnup spent nuclear fuels are extremely scarce, a mathematical modelling approach proposed by Johnson and McGinnes was successfully applied to the domestic high burnup PWR spent nuclear fuel to derive the IRF values of iodine and cesium. The best estimate of the IRF was 5.5% at a discharge burnup of 55 GWd tHM-1.

Reference Spent Nuclear Fuel for Pyroprocessing Facility Design (파이로공정 시설 개념설계를 위한 기준 사용후핵연료 선정)

  • Cho, Dong-Keun;Yoon, Seok-Kyun;Choi, Heui-Joo;Choi, Jong-Won;Ko, Won-Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.3
    • /
    • pp.225-232
    • /
    • 2008
  • An estimation has been made for inventories and characteristics of spent nuclear fuel(SNF) to be generated from existing and planned nuclear power plants based on the 3rd Basic Plan for Electric Power Demand and Supply. The characteristics under consideration in this study are dimensions, a fuel rod array, a weight, $^{235}U$ enrichment, and the discharge burnup in terms of fuel assembly. These are essentially needed for designing a pyroprocessing facility. It is appeared that the anticipated quantity by the end of 2077 is about 23,000 tU for PWR spent nuclear fuel. It is revealed that the proportion of SNF with the initial $^{235}U$ enrichment below 4.5 weight percent(wt.%) is approximately 95 % in total. For SNF with 16$\times$16 fuel rod array the proportion is expected approximately 74% in total. It appears that the average burnup of SNF will be 55 GWd/tU after the medium and/or latter part of 2010s while the average burnup is 45 GWd/tU at present. Finally, a requirement in terms of reference SNF for designing the pyroprocessing facility has been derived from the above-mentioned results. The anticipated SNF seems to be 16$\times$16 Korean Standard Fuel Assembly with a cross section of 21.4 cm$\times$21.4 cm, a length of 453 cm, a mass of 672 kg, the initial $^{235}U$ enrichment of 4.5 wt.%, and the discharge burnup of 55 GWd/tU.

  • PDF

Nuclear Criticality Analyses of Two Different Disposal Canisters for Deep Geological Repository Considering Burnup Credit

  • Hyungju Yun;Manho Han;Seo-Yeon Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.501-510
    • /
    • 2022
  • The nuclear criticality analyses considering burnup credit were performed for a spent nuclear fuel (SNF) disposal cell consisting of bentonite buffer and two different types of SNF disposal canister: the KBS-3 canister and small standardized transportation, aging and disposal (STAD) canister. Firstly, the KBS-3 & STAD canister containing four SNFs of the initial enrichment of 4.0wt% 235U and discharge burnup of 45,000 MWD/MTU were modelled. The keff values for the cooling times of 40, 50, and 60 years of SNFs were calculated to be 0.79108, 0.78803, and 0.78484 & 0.76149, 0.75683, and 0.75444, respectively. Secondly, the KBS-3 & STAD canister with four SNFs of 4.5wt% and 55,000 MWD/MTU were modelled. The keff values for the cooling times of 40, 50, and 60 years were 0.78067, 0.77581, and 0.77335 & 0.75024, 0.74647, and 0.74420, respectively. Therefore, all cases met the performance criterion with respect to the keff value, 0.95. The STAD canister had the lower keff values than KBS-3. The neutron absorber plates in the STAD canister significantly affected the reduction in keff values although the distance among the SNFs in the STAD canister was considerably shorter than that in the KBS-3 canister.

Scoping Calculations on Criticality and Shielding of the Improved KAERI Reference Disposal System for SNFs (KRS+)

  • Kim, In-Young;Cho, Dong-Keun;Lee, Jongyoul;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.37-50
    • /
    • 2020
  • In this paper, an overview of the scoping calculation results is provided with respect to criticality and radiation shielding of two KBS-3V type PWR SNF disposal systems and one NWMO-type CANDU SNF disposal system of the improved KAERI reference disposal system for SNFs (KRS+). The results confirmed that the calculated effective multiplication factors (keff) of each disposal system comply with the design criteria (< 0.95). Based on a sensitivity study, the bounding conditions for criticality assumed a flooded container, actinide-only fuel composition, and a decay time of tens of thousands of years. The necessity of mixed loading for some PWR SNFs with high enrichment and low discharge burnup was identified from the evaluated preliminary possible loading area. Furthermore, the absorbed dose rate in the bentonite region was confirmed to be considerably lower than the design criterion (< 1 Gy·hr-1). Entire PWR SNFs with various enrichment and discharge burnup can be deposited in the KRS+ system without any shielding issues. The container thickness applied to the current KRS+ design was clarified as sufficient considering the minimum thickness of the container to satisfy the shielding criterion. In conclusion, the current KRS+ design is suitable in terms of nuclear criticality and radiation shielding.